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Abstract— The rapid growth of digital content has intensified 

the problem of information overload, making it challenging 

for users to access relevant resources. Recommender systems 

(RSs) address this issue by filtering data and providing 

suggestions, thereby improving decision-making and user 

satisfaction. This paper presents a comprehensive review of 

recommender systems (RSs), with particular emphasis on 

their methods, techniques, benefits, history, and applications. 

It examines traditional approaches, including collaborative 

filtering, content-based filtering, and hybrid strategies, 

before providing a classification of deep learning models in 

recommender systems and analyzing their impact on 

enhancing RS capabilities. In addition, the paper discusses 

evaluation methods used to assess recommendation 

performance and highlights their roles in measuring system 

effectiveness. Finally, it synthesizes the key challenges 

confronting recommender systems, including data sparsity, 

scalability, and cold-start issues. 
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I. INTRODUCTION 

In today’s digital era, users are confronted with an 

overwhelming abundance of information, products, and 

services available through online platforms. This 

phenomenon, often referred to as information overload, 

makes it increasingly difficult for individuals to identify 

content that aligns with their preferences and needs. To 

address this challenge, recommender systems (RSs) have 

emerged as intelligent tools to filter large volumes of data and 

provide suggestions based on users' behavior, preferences, 

and contextual information. By reducing search effort and 

enhancing decision-making, RSs play a pivotal role in 

shaping user experiences across various domains such as e-

commerce, entertainment, social media, online learning, and 

healthcare. 

Recommender systems have significantly evolved over 

the past three decades. Early approaches relied primarily on 

traditional techniques, such as collaborative filtering, content-

based filtering, and hybrid methods, which laid the 

groundwork for personalized recommendations. While 

effective, these approaches often face limitations such as data 

sparsity, cold-start problems, and scalability issues. With the 

advent of deep learning, the field has experienced 

transformative advancements, as neural networks and 

representation learning enable systems to capture complex 

patterns, incorporate multimodal data, and deliver more 

accurate and dynamic recommendations. The main objectives 

of this review are: 

• To provide a comprehensive overview of different 

methods and techniques in recommender systems, 

examining their evolution, applications, and challenges. 

• To analyze evaluation methods used in recommender 

systems, emphasizing their roles in assessing system 

performance.  

• To identify the key challenges faced by recommender 

systems, to highlight ongoing limitations and motivate 

future research directions. 

The key contributions of this review can be summarized 

as follows: 

•  It presents a comprehensive overview of 

recommendation systems, with a particular emphasis on 

their underlying methods and techniques. 

• It provides a structured evaluation methods, including 

widely used protocols and performance metrics, to guide 

researchers in assessing system effectiveness. 

• It highlights common challenges such as scalability, data 

sparsity, cold-start problems, explainability, and over-

specialization, thereby outlining open issues for future 

research 

• It offers a consolidated reference that bridges the 

theoretical framework with practical applications, 

serving as a resource for academic researchers. 
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Given these objectives and contributions, the paper is 

structured as follows: Section 1 introduces the article, 

highlighting research objectives, contributions, and the 

paper’s structure. Section 2 provides the fundamental 

concepts, benefits, applications and history of recommender 

systems. Section 3 discusses traditional methods, including 

collaborative, content-based, and hybrid approaches. Section 

4 explores deep learning–based recommendation models 

classifications, outlining their effectiveness on RSs. Section 

5 focuses on evaluation methods, discussing commonly used 

strategies for assessing system performance. Finally, section 

6 determines the key challenges faced by recommender 

systems.  Section 7 concludes the review and outlining future 

work. 

II. RECOMMENDATION SYSTEMS OVERVIEW 

2.1 Definition and General Function  

Recommender systems (RSs) are intelligent tools that 

filter large volumes of data to provide personalized 

suggestions based on user preferences, behaviors, and 

contextual information  [1]. Their main goal is to reduce 

search effort, enhance decision-making, and improve user 

satisfaction by delivering ranked recommendation lists[2] [3]. 

These systems are widely applied across domains, such as 

book recommendations and e-commerce platforms like 

Amazon, where they tailor content and product suggestions 

to individual users ([1].  

At the core of any recommender system lie two 

fundamental entities: users and items. Users represent 

individuals interacting with the system (e.g., readers, viewers, 

or shoppers), while items correspond to the products, 

services, or content available for recommendation (e.g., 

books, movies, or job postings) [1]. User preferences are 

generally captured through two feedback mechanisms: 

explicit ratings, where users provide direct evaluations (e.g., 

numerical scores or labeled intervals), and implicit ratings, 

which are inferred from behavioral patterns such as clicks, 

browsing history, or time spent on a webpage. Most modern 

recommender systems employ a combination of both 

feedback types to generate accurate and context-aware 

predictions. 

These interactions are systematically represented within 

the user–item utility matrix, which constitutes the backbone 

of many recommendation algorithms[2, 4]. In this matrix, 

rows denote users and columns denote items, with each cell 

containing the rating or preference score a user has assigned 

to an item. Empty cells represent missing values, indicating 

that a user has not yet rated or interacted with a particular 

item. An example of a utility matrix is presented in Figure 1, 

where User 1 rated Book 1 as 5 and Book 2 as 3 but did not 

rate Book 3, while User 2 provided ratings for Books 2 and 3 

but not Book 1. The unfilled cells highlight the predictions 

that algorithms, particularly collaborative filtering 

approaches using matrix completion, aim to estimate. 

 

Figure 1: Example of a utility matrix 

This utility matrix serves as the foundation for most 

recommendation algorithms. In collaborative filtering, the 

system identifies patterns among users with similar behavior 

to suggest items of interest, while in content-based filtering, 

the focus lies on comparing item features with a user’s known 

preferences [2, 5]. This structured user–item interaction is 

essential for generating relevant, personalized 

recommendations. 

To formalize this process, a recommender system is often 

modeled mathematically. Let 𝑈 denote the set of users and 𝐼 

the set of all items available for recommendation. A utility 

function 𝑓 to measure the relevance of an item 𝑖 for a user 𝑢, 

expressed as𝑓: 𝑈 × 𝐼 → 𝑅, where 𝑅 is an ordered set of utility 

values. The system, for each user 𝑢 ∈ 𝑈, recommends items 

𝑖′ ∈ 𝐼 that maximize the utility for this user. This formula can 

be expressed mathematically as in equation (1) [3]:  

 

           ∀𝑢 ∈ 𝑈, 𝑖𝑢
′ =  argmax𝑖 ∈𝐼𝑓(𝑢, 𝑖).                   (1) 

 

Ultimately, recommender systems can be broadly 

categorised into two main approaches: personalised and non-

personalised. Personalized systems leverage the unique 

history and behavior of each user to deliver tailored 

recommendations, while non-personalized systems provide 

generalized suggestions without considering individual 

preferences  [3]. 

2.2 Data Sources 

Recommender systems (RSs) are computational models 

that generate personalized suggestions by leveraging diverse 

data sources, including user profiles, item attributes, and 

user–item interactions. The type and granularity of data 

required depend on the underlying approach: while some 

algorithms operate effectively on basic rating information, 

others necessitate richer and more complex datasets to 

uncover deeper patterns and insights [6]. These data sources 

are commonly categorized into three groups: user data, item 

data, and interaction data, each contributing uniquely to the 

design and effectiveness of recommendation systems. 

1. User Data 



International Journal of Contemporary Computer Research (IJCCR), Vol.1 Issue.1 (January, 2025) 

ISSN: 2600-9048 

3 

 

Users are the recipients of recommendations, and each 

individual typically exhibits unique goals and preferences. To 

generate accurate suggestions, recommender systems collect 

and analyze user-specific information, the nature of which 

varies depending on the underlying algorithm. Traditional 

collaborative filtering approaches often define a user profile 

solely through rating histories, whereas more advanced 

systems incorporate socio-demographic attributes (e.g., age, 

gender, education, occupation) to improve personalization. 

These features are typically encoded into user models, often 

represented as vectors that capture individual tastes. Beyond 

static attributes, behavioral signals—such as browsing 

history, interaction patterns, or clickstream data—are 

particularly valuable, as they enable systems to adapt 

dynamically to evolving user interests. 

2. Item Data 

Items constitute the central entities of recommendation, 

and their representation plays a crucial role in shaping system 

outputs. Each item is evaluated along two key dimensions: 

utility, which measures its perceived relevance or benefit to 

the user, and information complexity, which reflects the 

cognitive effort required for evaluation. For instance, news 

articles are considered low in complexity due to concise 

headlines, whereas job postings are high in complexity, 

requiring detailed review. To facilitate effective comparison 

and ranking, recommender systems utilize a range of item 

attributes, such as ID, title, genre, or language. The 

integration of these attributes, along with contextual factors, 

directly influences how items are matched with user 

preferences in different recommendation scenarios. 

3. Interactions data  

Interaction data captures the exchanges between users 

and items, and serves as a key resource for inferring 

preferences. These data may be explicit, such as user-

provided ratings, tags, or reviews, or implicit, such as clicks, 

search queries, or time spent engaging with content. Modern 

systems often integrate multiple interaction types to support 

diverse tasks and improve recommendation accuracy. For 

example, an e-commerce platform may use aggregate 

interaction logs to display trending products on the 

homepage, while leveraging fine-grained behavioral signals, 

such as item views or clicks, to personalize recommendations 

during browsing. By systematically recording and analyzing 

such transactions, recommender systems can refine their 

models and deliver context-aware, user-centric suggestions. 

2.3 The Process of a Recommender System (RS) 

As illustrated in Figure 2, a recommender system 

operates as a cyclical and structured process aimed at 

predicting and satisfying user needs through personalized 

suggestions. This workflow highlights the iterative nature of 

RSs, where user interactions generate data that is 

continuously fed back into the system for improved 

personalization. 

 

Figure 2: A workflow diagram of a recommender system process. 

Source: [3]. 

This process generally comprises five essential phases:  

1. User Interaction Phase 

Users engage with the system through an application 

interface, performing actions such as clicks, ratings, reviews, 

and purchases. These interactions provide raw behavioral 

signals, which are passed on for data collection and analysis. 

2. Data Collection Phase  

The system gathers and stores detailed user information 

to construct profiles that summarize individual characteristics 

and behaviors. Accurate profiling is crucial for effective 

personalization. User data is typically collected from three 

feedback sources. [4]: 

- Explicit feedback, where users directly provide 

evaluations (e.g., ratings, reviews). 

- Implicit feedback, inferred from behavioral 

patterns (e.g., clicks, browsing duration, purchase 

history). 

- Hybrid feedback, which integrates both explicit 

and implicit signals to improve robustness. 

This collected information serves as the foundational 

input for recommendation generation. 

3. Filtering Phase  

The aggregated data is processed using one or more 

filtering techniques: 

- Collaborative filtering, which identifies patterns 

of similarity across users or items. 

- Content-based filtering, which relies on item 

features to align with user preferences. 

- Hybrid filtering, which combines multiple 

techniques to overcome the limitations of 

individual approaches and improve accuracy. 

4. Ranking Algorithms Phase 

The filtered items are then prioritized using ranking 

algorithms, which assess the relative relevance of each item 

to a given user’s profile. This step ensures that the most 

suitable options appear at the top of the recommendation list. 

5. Data Presentation Phase  

Finally, the ranked recommendations are delivered to 

users through a clear and user-friendly interface, enabling 

seamless decision-making. This presentation closes the cycle 

by feeding user reactions back into the system for further 

refinement. 
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2.4 History of Recommendation Systems 

The history of recommender systems reflects a trajectory 

of continuous innovation shaped by advances in algorithms, 

computational power, and industrial adoption. This evolution 

can be broadly divided into five major phases, each 

representing a distinctive shift in how recommendations are 

generated and delivered to users.: 

1. Early Era: Manual and Rule-Based Filtering 

(1992 – mid 1990s) 

The concept of recommender systems originated in the 

early 1990s, when Belkin and Croft [7] distinguished between 

information filtering and information retrieval, laying the 

foundation for recommender technology. That same year, 

Goldberg, et al. [8] introduced the first information filtering 

model, Tapestry, which used collaborative filtering supported 

by user evaluations.  Soon after, systems like GroupLens 

introduced automated user-user collaborative filtering 

models, enabling scalable recommendation capabilities for 

larger audiences. Ringo and Video Recommender systems 

further extended these techniques to the music and video 

domains[5, 9]. 

2. Growth of Collaborative Filtering and E-

Commerce (Late 1990s - early 2000s) 

By the late 1990s, the commercial value of 

recommendation systems became evident, with companies 

like Net Perceptions offering personalized marketing engines 

for e-commerce platforms such as  Amazon and Best Buy. 

The MovieLens project, also by GroupLens, introduced 

benchmark datasets that remain widely used in academic 

research [9]. 

3. Hybridization and Matrix Factorization (mid 

2000s - early 2010s) 

As simple collaborative filtering faced issues like cold-

start problems, hybrid recommender systems emerged, 

combining collaborative, content-based, and knowledge-

based methods.[10] During the Netflix Prize (2006-2009), 

matrix factorization techniques gained prominence for their 

ability to handle large-scale and sparse data. This era also saw 

the introduction of Factorization Machines (FM) and Field-

aware Factorization Machines (FFM), which improved 

predictive power by modeling complex feature interactions. 

In 2007, the first ACM RecSys Conference was held, 

institutionalizing the research community around 

recommender systems. Today, ACM RecSys stands as one of 

the leading annual academic conferences dedicated to 

research in recommender systems [9]. 

4. Deep Learning and Neural Approaches (2016 - 

present) 

The introduction of deep neural networks brought 

transformative changes. Models like YouTubeDNN, Wide & 

Deep, DeepFM, and Neural Collaborative Filtering 

(NeuralCF) enhanced the ability to model complex user-item 

relationships [9].Transformer-based models (e.g., 

BERT4Rec) and reinforcement learning frameworks (e.g., 

DRN, NICF) further expanded capabilities, making 

recommendations more context-aware and dynamic [9]. 

5. Recent Trends: Graph-based and Causal 

Recommendation (2020s - future) 

In recent years, graph neural networks (e.g., KGAT, 

RippleNet) have captured relational information, improving 

recommendation diversity and explainability[9]. 

Furthermore, causal inference methods have emerged to 

address biases and fairness issues, signalling a shift towards 

more ethical and robust recommendation strategies [9].  

Figure 3 illustrates the key phases in the evolution of 

recommender systems, from early manual filtering and 

collaborative methods to hybrid models, deep learning, and 

recent graph-based and causal approaches. 

 

Figure 3: The evolution of recommender systems. 

2.5 Benefits of Recommender Systems (RS) 

Recommender systems (RSs) provide substantial 

advantages to both users and service providers across a wide 

range of domains. As digital environments continue to 

expand with overwhelming volumes of content, products, and 

services, the capacity to deliver relevant and personalized 

suggestions has become increasingly critical. The benefits of 

RSs can be broadly examined from two perspectives: those of 

users and service providers [1, 6]: 

2.5.1 User Benefits 

From the user’s perspective, recommender systems 

enhance decision-making, reduce information overload, and 

enrich the overall digital experience. The key benefits 

include: 

▪ Finding Items of Interest 

RSs help users identify content or products aligned with 

their preferences by providing ranked lists of suggested items. 

This is particularly valuable when users face difficulties 

locating desired content. Even when users know what they 

want, being exposed to related items can reinforce existing 

interests or inspire new ones, thereby enhancing both 

efficiency and discovery. 

▪ Discovering Groups of Related Items 

Beyond individual suggestions, RSs often provide 

bundle or sequential recommendations. For example, a user 
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purchasing a soccer ball might also be presented with 

complementary items such as shoes or shirts. Similarly, 

sequential recommendations, such as playlists in music 

services, reduce decision fatigue by presenting logically 

ordered items, thereby streamlining consumption. 

▪ Exploring Content 

Many users interact with RSs in an exploratory manner, 

browsing without a specific target. Platforms such as 

YouTube and Pinterest exemplify this functionality by 

showcasing personalized and novel suggestions on their 

homepages. This exploratory capability fosters engagement, 

stimulates curiosity, and builds long-term user loyalty. 

▪ Improving Recommendations Over Time 

RSs continuously refine their accuracy as they learn from 

user interactions. With repeated use, systems capture 

behavioral patterns and adapt to evolving interests, providing 

increasingly relevant and context-aware suggestions. This 

iterative improvement not only benefits users but also 

enhances the system’s predictive intelligence. 

▪ Assisting Others  

Some users contribute data, such as ratings or reviews, 

with the intention of supporting other users rather than for 

personal benefit. For example, in an automobile 

recommendation platform, a user may provide a rating after 

purchasing a car to help future buyers make informed 

decisions. This collective contribution strengthens the value 

of the RS ecosystem. 

2.5.2 Service Provider Benefits 

From the perspective of service providers, RSs deliver 

several strategic advantages that improve business 

performance and operational decision-making.  [1, 6] Key 

benefits include: 

▪ Increasing Item Sales  

Commercial RSs are designed to boost sales by 

encouraging users to purchase additional or related items that 

they might not otherwise consider. In non-commercial 

contexts, such as news or streaming platforms, the goal shifts 

toward increasing content consumption. Ultimately, RSs aim 

to improve the conversion rate, ensuring that users not only 

browse but also act on recommendations. 

▪ Increasing Sales of Diverse Products 

RSs expand visibility beyond popular items by 

promoting less obvious or niche options to suitable users. For 

instance, tourism platforms can highlight lesser-known 

attractions tailored to individual preferences, thereby 

diversifying exposure and increasing overall consumption. 

▪ Enhancing User Satisfaction 

A well-designed RS improves the user experience by 

delivering accurate, relevant, and engaging suggestions. 

When paired with a user-friendly interface, these 

recommendations positively shape perceptions of the 

platform, leading to greater acceptance and sustained usage. 

▪ Increasing User Loyalty 

Personalization fosters stronger user loyalty by 

recognizing returning visitors and adapting recommendations 

based on historical activity. As users engage repeatedly, the 

system refines its understanding of their preferences, 

strengthening their attachment to the platform and 

encouraging long-term retention. 

▪ Gaining Deeper Insights into User Preferences 

RSs capture and represent user preferences, both 

explicitly (e.g., ratings, reviews) and implicitly (e.g., 

clickstreams, browsing history). Service providers can 

repurpose this information to inform decision-making in 

areas such as inventory management, targeted marketing, or 

content development. For example, in tourism, destination 

management organizations may use interaction data to tailor 

promotional strategies or identify new customer segments. 

2.6 Recommendation System Applications 

With the exponential growth of data and the rapid 

expansion of online services, users are increasingly 

confronted with an overwhelming number of choices. In this 

context, recommender systems (RSs) have become 

indispensable tools for navigating vast information spaces 

and supporting informed decision-making. By delivering 

personalized and context-aware suggestions, RSs enhance 

user experiences, reduce search effort, and alleviate cognitive 

load. Their growing importance can be examined across three 

dimensions: industry adoption, academic research, and the 

availability of tools and commercial solutions. 

▪ Industry Adoption 

Major technology companies have integrated 

recommender systems as central components of their 

services. Examples include Amazon (e-commerce), YouTube 

(video streaming), Facebook (social media), LinkedIn 

(professional networking), Spotify (music streaming), 

Last.fm (online radio), IMDb (movie reviews), and 

TripAdvisor (travel advisory). These platforms rely on RSs to 

boost engagement, personalize user experiences, and increase 

retention. A notable milestone was the Netflix Prize, which 

offered a $1 million reward for improving the company’s 

recommendation algorithm, highlighting the commercial 

significance of RS innovation [6]. 

▪ Academic Research and Education 

RSs have also become a vibrant research field within 

academia. Dedicated conferences, such as the ACM 

Conference on Recommender Systems (RecSys), serve as 

premier venues for presenting cutting-edge work, while 

broader conferences, including the Web Conference 

(WWW), the Conference on Knowledge Discovery and Data 

Mining (KDD), and the SIGIR Conference, consistently 

feature RS-related research. In addition, the proliferation of 

university courses, textbooks, and journal publications 

reflects the growing academic attention and educational 

emphasis on this domain.[6]. 
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▪ Availability of Tools and Commercial 

Solutions 

The accessibility of RS technologies has expanded 

considerably. Open-source implementations are widely 

available through platforms such as GitHub, with major 

contributors like Microsoft releasing freely usable 

frameworks. Furthermore, commercial cloud-based 

solutions, such as Amazon Web Services (AWS) Personalize 

and Google Recommendations AI, provide scalable and 

customizable recommendation services. These offerings 

democratize access, enabling not only large enterprises and 

researchers but also smaller businesses and individual 

developers to deploy advanced recommendation capabilities. 

As a result of these developments, RSs have become 

integral to numerous domains, ranging from entertainment 

and education to e-commerce and social networking. 

Examples of application areas are summarized in Table 1. 

Table 1 

Examples of popular platforms and their recommended content. 

 

Platform 

Domain 

Examples Type of 

Recommendations 

Entertainment Netflix, Spotify, YouTube Movies, songs, 

and shows based 

on user 

preferences 

Information 

Content 

Platforms 

Google News, Bing News, and 

E-learning platforms 

News articles, web 

pages, and 

educational 

content 

 Online 

Services 

Travel sites, Matchmaking 

services, Professional networks 

Travel 

destinations, 

consultants, and 

matchmaking 

suggestions. 

 E-commerce Amazon Products, 

complementary or 

sequential items 

Social 

Platforms 

Facebook, LinkedIn, Twitter Friends, groups, 

posts, and 

advertisements. 

 Other 

Domains 

Customer support, Insurance 

services, Conversational agents 

Solutions, policies, 

support content, 

chatbot replies 

 

III. Traditional Recommendation Systems Methods 

Recommender system development has been shaped by 

a variety of methodological approaches, each of which is 

designed to address the challenge of filtering vast amounts of 

information and delivering suggestions. Traditional methods 

laid the groundwork for modern recommendation 

technologies and remain central in both academic research 

and industrial applications. These methods differ in how they 

model user preferences, represent item features, and generate 

predictions, yet they share the common goal of enhancing 

user experience by reducing information overload. 

Recommendation system (RS) methods have historically 

been classified into several categories, including 

collaborative filtering, content-based filtering, utility-based 

methods, demographic-based methods, knowledge-based 

approaches, and hybrid methods  [11].  Each of these 

approaches employs distinct principles and techniques to 

generate recommendations, with their applicability varying 

according to data characteristics and domain requirements. 

Among these, collaborative filtering, content-based filtering, 

and hybrid approaches have emerged as the most widely 

adopted due to their effectiveness and adaptability across 

diverse application areas. 

3.1 Collaborative Filtering (CF)  

Collaborative Filtering (CF) represents one of the earliest 

and most fundamental methodologies in the evolution of 

recommendation systems. The concept of CF was first 

introduced by Goldberg et al. in 1992 [5]. Since then, it has 

since become an essential method in personalized 

recommendation technologies. This method generates 

personalized recommendations for  users based on their 

preferences and the behaviors of similar users. The 

underlying premise of this approach is that users with similar 

preferences are likely to exhibit comparable interests and, 

consequently, enjoy similar items. By leveraging the 

collective behaviors and preferences of a user community, CF 

can generate tailored recommendations that align closely with 

individual tastes (Wu, 2022). Figure 4 illustrates a 

collaborative filtering recommendation system.  

 

Figure 4: collaborative filtering. 

Source :[12] 

 

Collaborative Filtering Classifications  

Collaborative filtering generally can be classified into 

two key categories: memory-based methods and model-based 

methods[13].  

3.1.1.1 Memory-Based Collaborative Filtering  

Memory-based CF methods generate recommendations 

by considering the preferences of neighboring users. These 

approaches rely directly on the utility matrix to make 

predictions. The model can be formally represented as a 

function, where the utility matrix serves as the input [2]. 

- Mathematical Representation of the 

Memory-Based CF 

The memory-based collaborative filtering model can be 

mathematically formulated as shown in equation (2): 
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Model = f (Utility Matrix).               (2) 

In this representation, f denotes the function or algorithm 

that processes the input, which is the utility matrix containing 

user-item interactions. The output of this function is a set of 

predicted ratings or preferences for previously unrated items. 

These predictions are subsequently used to generate 

personalized recommendations for each user.[2]. 

Building upon this foundation, once the model has been 

established, the recommendation process advances through a 

function that takes both the defined model and the user's 

profile as inputs. However, this approach is inherently 

restricted to users whose profiles are already present in the 

utility matrix. To extend recommendations to a new user, 

their profile must first be incorporated into the matrix. This 

integration requires recalculating the similarity matrix to 

reflect the updated user data, thereby enabling the system to 

identify relevant neighbors for the new user. As a result, this 

process becomes computationally demanding, especially in 

dynamic environments characterized by frequent user 

additions and updates. 

- Recommendation Process of the Memory-

Based CF 

Following the construction of the model, 

recommendations are produced using a function that 

considers both the defined model and the user’s profile as 

inputs. This relationship can be expressed as presented in the 

formula (3) [2]: 

Recommendation = f (Defined Model, User Profile) .          (3) 

Where, User Profile ∈ Utility Matrix. 

This formulation indicates that recommendations can 

only be generated for users whose profiles are present within 

the utility matrix. To accommodate a new user, their profile 

must first be incorporated into the matrix. This integration 

requires the system to recompute the similarity matrix to 

reflect the updated user-item relationships. Consequently, 

this step increases computational demands, particularly in 

large-scale or frequently updated recommendation systems. 

In addition, Memory-Based Collaborative Filtering 

employs techniques such as Pearson Correlation, Vector 

Cosine Similarity, and K-Nearest Neighbors (KNN) to 

identify similar user groups, or neighborhoods, and 

subsequently recommend items to users within these groups. 

Furthermore, this method  is classified  into two types: user-

based collaborative filtering and item-based collaborative 

filtering[13]. User-based collaborative filtering functions by 

identifying similarities among users through the comparison 

of their ratings on shared items. Based on ratings provided by 

similar users, the model  the model generates a ranked list of 

the top N items that best align with the target user’s 

preferences [2, 13]. In contrast, item-based collaborative 

filtering estimates a user's preference for a given item by 

evaluating its similarity to items the user has previously 

interacted with, as derived from the user-item rating 

matrix[14]. Figure 5 illustrates the difference between user-

based and item-based collaborative filtering. 

 
Figure 5: The processes of user-based and item-based CF. 

Source :[15]. 

3.1.1.2 Model-Based Collaborative Filtering  

Model-based collaborative filtering employs data mining 

and machine learning algorithms to construct predictive 

models that estimate a user's rating for previously unrated 

items. The model-based collaborative filtering methods 

utilize various data mining and machine learning algorithms 

to construct predictive models capable of estimating a user's 

rating for unrated items. Unlike memory-based approaches, 

they do not require the entire dataset during the 

recommendation phase. Instead, they extract significant 

features from the dataset to train the model, which gives rise 

to the term "model-based technique." The prediction process 

typically involves two stages: first, building the model, and 

second, using a function f that takes the defined model and 

the user profile as inputs to generate rating predictions, as 

shown in equation (3): 

Recommendation = f (Defined Model, User Profile).   (3) 

 

Where, User Profile ∉ Utility Matrix. 

A key advantage of model-based techniques is that they 

do not require new user profiles to be integrated into the 

utility matrix before making predictions. Recommendations 

can be provided even to users who are not part of the existing 

model, making these systems highly suitable for generating 

group recommendations. By utilizing a pre-trained model, 

they can quickly suggest a range of relevant items. Moreover, 

the accuracy of model-based systems heavily depends on the 

performance of the underlying learning algorithms. These 

methods are particularly effective in addressing common 

challenges in recommender systems, such as sparsity and 

scalability, by using dimensionality reduction and advanced 

model learning techniques. 

3.1.2 Techniques Commonly Used in CF 

CF utilized many techniques to compute the similarity 

between users. These techniques are mainly categorized into 
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two types: techniques used in  memory-based CF  and model-

based CF. 

 

▪ Techniques used in  Memory-Based CF   

Typically, Memory-Based Collaborative Filtering is 

categorized into two primary approaches: user-based 

collaborative filtering and item-based collaborative filtering. 

Common techniques used in both user-based and item-based 

CF include:  

1. Similarity Measures 

In Collaborative Filtering, similarity measures calculate 

how closely two users' preferences align based on the ratings 

they have given to the same items. A similarity score ranges 

between 0 and 1, and sometimes between -1 and 1 depending 

on the method. 

- A value closer to 1 → means the users have 

very similar tastes. 

- A value closer to 0 → means the users have 

different tastes 

Common similarity calculation methods involve: 

a) Euclidean Distance 

Euclidean distance, represented as d, measures the 

straight-line distance between two users u and v (or two items 

i and j) in a Euclidean space. Each user is treated as a point 

defined by their coordinates based on item ratings, and 

similarly, each item is defined by user ratings. The distance 

between two users or items is calculated as the absolute value 

of the difference between their respective coordinates [16]. 

Subsequently, the location distance between two users, 

represented by vectors u and v (or two items i and j), indicates 

how similar they are: the smaller the distance, the more 

similar they are. This relationship is quantified using the 

formula shown in the Equation: two users or items, 

represented by vectors u and v, indicate how similar they are; 

the smaller the distance, the more similar they are. [11, 17]. 

The Euclidean distance formula, which quantifies the 

similarity between users u and v, is given as shown in 

equation (4) [16]: 

𝑑(𝑢, 𝑣) =  √∑ (𝑟𝑣𝑖 − 𝑟𝑢𝑖)
2

𝑖∈𝐼𝑢 𝑣
    .           (4) 

In this equation, 𝐼𝑢 𝑣
 represents the set of items that both 

users u and v have rated. The values 𝑟𝑣𝑖
 and 𝑟𝑢𝑖

 correspond to 

the ratings given by users u and v, respectively, for item i. 

Formula (5) calculates the Euclidean distance between two 

items, i and j [16]: 

𝑑(𝑖, 𝑗) =  √∑ (𝑟𝑢𝑗 − 𝑟𝑢𝑖)
2

𝑖∈𝑈𝑖𝑗
   .               (5) 

Here, 𝑈𝑖𝑗
 refers to the group of users who have rated both 

items i and j. The terms 𝑟𝑢𝑖
 and 𝑟𝑢𝑗

 indicate the ratings given 

by user u for item i and j, respectively. To use Euclidean 

distance as a similarity metric, it must be normalized. 

Formulas (6) and (7) present the Euclidean similarity (ES) 

calculations for users and items, respectively [16]. 

𝑬𝑺(𝒖, 𝒗) =  
𝟏

𝟏+𝒅(𝒖,𝒗)
   .                        (6) 

𝑬𝑺(𝒊, 𝒋) =  
𝟏

𝟏+𝒅(𝒊,𝒋)
    .                           (7) 

b) Pearson correlation 

Pearson correlation measures the degree of linear 

relationship between two users based on their ratings, 

producing a value ranging from -1 to 1[11]. A value of 1 

signifies a strong positive relationship, (–1) indicates a strong 

negative relationship, and (0) means there is no correlation 

between the variables [18] . The similarity among two users 

u and v is expressed as presented in equation (8) [16] : 

𝑃𝐶𝐶(𝑢, 𝑣) =
∑ (𝑟𝑢𝑖− 𝑟ˉ𝑢)((𝑟𝑣𝑖− 𝑟ˉ𝑣)𝑖∈𝐼𝑢 𝑣

√∑ (𝑟𝑢 𝑖− 𝑟ˉ𝑢)2
𝑖∈𝐼𝑢 𝑣 √∑ (𝑟𝑣𝑖− 𝑟ˉ𝑣)2

𝑖∈𝐼𝑢 𝑣

  .(8) 

In this context, 𝐼𝑢 𝑣
 represents the set of items that have 

been rated by both users u and v. The terms 𝑟ˉ𝑢
 and 𝑟ˉ𝑣

 refer 

to the average ratings given by users u and v on the items 

within 𝐼𝑢 𝑣
 respectively.𝑟𝑢𝑖

 and 𝑟𝑣𝑖
 are the individual ratings 

that users u and v assigned to the same item i. Formula (9) is 

used to compute the similarity between two items i and j [16]: 

𝑃𝐶𝐶(𝑖, 𝑗) =
∑ (𝑟𝑢𝑖− 𝑟ˉ𝑖)((𝑟𝑢𝑗− 𝑟ˉ𝑗)𝑖∈𝑈𝑖𝑗

√∑ (𝑟𝑢 𝑖− 𝑟ˉ𝑖)2
𝑖∈𝑈𝑖𝑗

√∑ (𝑟𝑢𝑗− 𝑟ˉ𝑗)
2

𝑖∈𝑈𝑖𝑗

  .    (9) 

Here, 𝑈𝑖𝑗
 refers to the group of users who have rated both 

items i and j. The symbols 𝑟ˉ𝑖  and 𝑟 𝑗̄
 represent the average 

ratings for items i and j among these users. 𝑟𝑢𝑖
 and 𝑟𝑢𝑗

 

indicate the ratings given by user u to items i and j, 

respectively. 

c) Vector Cosine Similarity 

In this method, a user is represented as a vector 

containing their item ratings, while an item is represented as 

a vector of ratings given by multiple users. The cosine of the 

angle between two such vectors—whether for users or 

items—reflects their level of similarity. A cosine value close 

to 1 indicates a strong similarity, whereas a value near 0 

suggests that the variables are unrelated or independent. 

Equations (10) and (11) illustrate how cosine similarity is 

calculated for user-based and item-based comparisons, 

respectively[16]: 

𝐶𝑜𝑠𝑖𝑛𝑒 (𝑢, 𝑣) =  
∑ 𝑟𝑢𝑖𝑟𝑣𝑖𝑖∈𝐼𝑢 𝑣

√∑ 𝑟𝑢𝑖
2

𝑢∈𝐼𝑢 √∑ 𝑟𝑣𝑖
2

𝑢∈𝐼𝑣 

  .             (10) 

 

In this formula, 𝐼𝑢  and 𝐼𝑣  represent the sets of items rated by 

users u and v, while 𝐼𝑢 𝑣 refers to the set of items that both 

users have rated. The terms 𝑟𝑢𝑖 and 𝑟𝑣𝑖 indicate the rating 

scores that users u and v assigned to item i, respectively[16].  
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𝐶𝑜𝑠𝑖𝑛𝑒 (𝑖, 𝑗) =  
∑ 𝑟𝑢𝑖𝑟𝑢𝑗𝑢∈𝑈𝑖 𝑗

√∑ 𝑟𝑢𝑖
2

𝑢∈𝑈𝑖 √∑ 𝑟𝑢𝑗
2

𝑢∈𝑈𝑗 

 .             (11) 

Here, 𝑈𝑖 
 and 𝑈𝑗 

 refer to the sets of users who have rated 

items i and j, respectively, while 𝑈𝑖 𝑗   indicates the group of  

users who have rated both items. The values 𝒓𝒖𝒊 and 𝒓𝒖𝒋 

represent the ratings given by the same user u to items i and 

j, respectively.  

d) Jaccard Index 

 The Jaccard index, symbolized as J, is used to evaluate 

the similarity and diversity between two sets. It is calculated 

by dividing the number of elements common to both sets 

(their intersection) by the total number of unique elements 

across both sets (their union). In other words, it reflects the 

proportion of shared elements relative to the total elements in 

the two sets. The Jaccard index ranges from 0 to 1, where 

values closer to 1 indicate greater similarity. Equation (12) 

shows how to compute the Jaccard index for two vectors u 

and v, which may represent either users (as sets of rated 

items) or items (as sets of user ratings) [16]. 

            𝐽(𝑢, 𝑣) =  
|𝑢∩𝑣|

|𝑢∪𝑣|
   .                               (12) 

 

2. Top-N Neighborhood Selection 

Once similarity scores are calculated, the system selects 

the Top-N (or Top-K) most similar users or items to generate 

recommendations. One commonly used approach is the K-

Nearest Neighbors (KNN) method, which functions either by 

locating users with comparable preferences (UserKNN) or by 

identifying items similar to those a user has previously 

engaged with (ItemKNN). These methods were originally 

developed to process explicit feedback, such as user rating 

data [19]. 

▪ Techniques of Model-Based CF  

1. Matrix Factorization (MF) 

   Matrix Factorization emerged as a prominent 

recommendation technique following its successful 

application in the Netflix Prize competition, where it 

demonstrated a strong capability to address the issue of data 

sparsity commonly encountered in collaborative filtering 

approaches [13].This approach functions by deriving latent 

factors from user–item interaction data and mapping both 

users and items as vectors within a common latent feature 

space. The fundamental objective of Matrix Factorization is 

to identify underlying dimensions that encapsulate user 

preferences and characteristics by structuring the evaluation 

data within a rating matrix framework. Furthermore, this 

approach offers notable scalability and flexibility, as it can 

effectively incorporate both explicit feedback (e.g., user 

ratings) and implicit behavioral signals (e.g., search patterns 

and mouse movements), thereby enabling a more 

comprehensive analysis of user interests [13]. 

The two primary Matrix Factorization algorithms, Singular 

Value Decomposition (SVD) and Alternating Least Squares 

(ALS), along with their improved variants, have been widely 

adopted to enhance the effectiveness of recommender 

systems. 

- Singular Value Decomposition (SVD) is a matrix 

factorization technique that identifies underlying 

features in the dataset by decomposing the original user-

item rating matrix into a product of three smaller 

matrices[20]. 

- Alternating Least Squares (ALS) is a matrix 

factorization algorithm that d  

composes the original user-item rating matrix into two 

separate matrices: a user-to-feature matrix and an item-to-

feature matrix. It is particularly effective for handling sparse 

data by initially filling missing entries with random values 

and then iteratively minimizing the error term. This back-and-

forth optimization continues until the product of the two 

matrices closely approximates the original user-item matrix, 

thereby addressing the sparsity issue[20]. 

3. Clustering 

Clustering is a technique employed to categorize data 

into a limited set of groups or clusters, and it is widely utilized 

in recommendation systems, especially those based on 

Collaborative Filtering. Among the available clustering 

techniques, K-means is the most frequently used. This 

algorithm operates by first determining the desired number of 

clusters (K) and then organizing data points according to their 

closeness to the cluster centroids. Through an iterative 

process, each data point is assigned to the nearest cluster 

based on similarity metrics, and the centroids are 

subsequently updated[13]. 

3.1.3 The Process of Collaborative Filtering (CF) 

The collaborative filtering technique operates through a 

structured and systematic process,  aiming to generate 

recommendations based on the collective preferences and 

behaviors of users. This process generally comprises four 

essential stages: 

1. Build The Utility Matrix 

In this phase, user ratings or preferences, whether 

collected explicitly or implicitly, are gathered to construct a 

user-item matrix (also known as a utility matrix), as 

illustrated in the preceding section. Within this matrix, 

numerous entries are typically missing, representing the 

unknown user preferences that the model aims to predict.  

2. Computing Similarity Between Users or Items 

The system analyzes the matrix to calculate similarity 

scores to determine which users have comparable tastes and 

behaviors,  and which items are alike. This analysis enables 

the identification of the most relevant neighbors for each user. 

Using these relationships, the system predicts the missing 

values through a process known as matrix completion, 

thereby estimating users' unknown preferences. To identify 
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similarities between users, the system employs two main 

approaches, user-based and item-based. As explained 

previously, user-based collaborative filtering recommends 

items by identifying users with similar preferences and 

suggesting items that similar users have liked. Whereas item-

based collaborative filtering recommends books like those a 

user has previously enjoyed. 

3. Predict Missing Ratings (Recommendation Scores) 

Once similarities are computed, missing ratings are 

estimated as follows: 

- For User-Based Collaborative Filtering (CF) 

Various methods have been introduced to estimate the 

rating for an active user. Among them, the weighted sum 

approach, as proposed by Sarwar et al. (2001), remains one 

of the most widely adopted techniques. This method is 

mathematically expressed in equation (13) [16]: 

r̂𝑢 𝑖 = 
∑ 𝑣∈𝑁𝑢 

𝑖 𝑆𝑖𝑚𝑢 𝑣×𝑟𝑣 𝑖

∑ 𝑣∈𝑁𝑢 
𝑖 |𝑆𝑖𝑚𝑢 𝑣|

   .                   (13) 

Where, r̂𝑢 𝑖
 predicted rating of item i by user v.  The set 

𝑁𝑢 
𝑖  consists of the top-k most similar users to user u who have 

already rated item i.  The variable 𝑣 represents a user within 

this neighborhood. The term 𝑆𝑖𝑚𝑢 𝑣 measures the similarity 

between user u and user v, typically based on their historical 

rating patterns. 𝑟𝑣 𝑖
 is the actual rating that neighboring user v 

has given to item i. 

- For Item-Based Collaborative Filtering (CF) 

A variety of methods have been introduced for rating 

prediction. The most widely recognized approaches include 

Z-score normalization, the Weighted Sum method, and 

Mean-Centred Aggregation. The formula for the weighted 

sum approach is presented in equation (14) [16]: 

r̂𝑢 𝑖 = 
∑ 𝑗∈𝑁𝑖 

𝑢𝑆𝑖𝑚𝑖 𝑗×𝑟𝑢𝑗

∑ 𝑗∈𝑁𝑖 
𝑖𝑢|𝑆𝑖𝑚𝑖𝑗|

   .                (14) 

In this equation, r̂𝑢 𝑖
 predicted rating of item i by user u. 

The variable j refers to an item within the neighbourhood of 

item i, specifically those items that are considered similar to i 

and have been rated by the same user. The term  𝑆𝑖𝑚𝑖 𝑗
→ 

denotes the similarity score between items i and j, which is 

typically calculated based on item features or user rating 

patterns. 𝑟𝑢𝑗
 indicates the actual, known rating that user u has 

assigned to item j. The set 𝑁𝑖 
𝑢 represents the neighborhood of 

item i for user u, which includes the top-k most similar items 

to i that user u has previously rated. 

4. Generate Recommendations 

After predicting the missing ratings, the system ranks 

items with the highest predicted ratings and recommends the 

Top-ranked items to the user. In this case, CF leverages the 

collective behaviors of users to suggest items that align with 

individual interests. These suggestions form the basis for 

generating recommendations.  

Figure 6 illustrates the collaborative filtering process for 

generating item recommendations to users. 

 
Figure 6: The collaborative filtering stages. 

3.2 Content-Based Filtering (CBF) 

Content-based filtering, a recommendation method that 

emerged in the early 1990s, relies on analyzing item attributes 

to generate recommendations. The development of this 

approach was influenced by the study of Loeb and Terry [21], 

which initiated the exploration of various models for 

information filtering and laid the groundwork for subsequent 

advancements in the field [13]. Content-based filtering 

suggests items by comparing the features of products a user 

has previously liked with those of other available items [2, 

13]. This approach analyzes the content of items that a user 

has interacted with and recommends similar ones accordingly 

[3]. As a result, it requires a detailed understanding of item 

attributes, such as genre, author, and keywords, to produce 

meaningful suggestions [2]. 

In content-based filtering, recommendations are 

exclusively based on the user's data and previous activities. A 

core element of CBF strategy involves building a user profile 

that captures individual preferences derived from the 

descriptions of preferred items [22]. This method is 

commonly employed when recommending documents such 

as web pages, news articles, research papers, books, or 

restaurants. It works by comparing the attributes of potential 

items against the user profile. Only items that exhibit high 

similarity to the user's preferences are recommended, 

ensuring personalized and relevant suggestions[23]. Figure 7 

illustrates content-based filtering: 

 

Figure 7: The content-based filtering. 

Source [24]. 

3.2.1 Techniques Commonly Used in CBF 
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1. TF-IDF 

In the domain of information retrieval, Term Frequency–

Inverse Document Frequency (TF-IDF) is one of the most 

widely used techniques for weighting the importance of terms 

in a document. It serves as a fundamental weighting scheme 

that quantifies the importance of words based on their 

occurrence within documents. TF-IDF is frequently used in 

tasks such as keyword extraction, document similarity 

assessment, and relevance ranking [25]. 

In the approach presented, three statistical measures, 

Term Frequency (TF), Inverse Document Frequency (IDF), 

and their combination TF-IDF,are computed for each word 

token across both document clusters and individual texts. 

- Term Frequency (TF) quantifies how often a specific 

term appear within a document, offering insight into the 

term’s importance in that context. A higher TF score 

indicates greater significance of the term within the 

document. TF is formally defined as in equation 

(15)[25]: 

𝑇𝐹𝑡,𝑑 =
𝒇𝒕,𝒅

𝒎𝒂𝒙{𝒇
𝒕′,𝒅

:𝒕′∈𝒅}

  .                       (15) 

Where 𝑓𝑡,𝑑
 refers to the frequency of term t in document 

d, and the denominator  

represents the maximum frequency of any term in the same 

document. 

- Inverse Document Frequency (IDF), by contrast, 

measures how uncommon or distinctive a term is across 

a corpus. Words that appear in fewer documents receive 

higher IDF values, highlighting their discriminative 

power. It is defined as in formula (16) [25]: 

𝐼𝐷𝐹𝑡,𝐷 = 𝑙𝑜𝑔
𝐷

|{𝑑∈𝐷:𝑡∈𝑑}|
  .                           (16) 

where D is the total number of documents, and the 

denominator counts the number of documents in which the 

term t appears. 

- The combined TF-IDF score is obtained by 

multiplying the TF and IDF values. This score 

increases when a term appears frequently in a 

particular document but rarely across the rest of the 

corpus, thereby indicating its relevance as in 

equation (17) [25]: 

𝑇𝐹 − 𝐼𝐷𝐹 =  𝑇𝐹𝑡,𝑑 × 𝐼𝐷𝐹𝑡,𝐷
 .              (17) 

This weighting scheme effectively balances term 

frequency with term uniqueness,  

making it a robust feature for tasks such as content-based 

recommendation and text classification. 

2. Cosine Similarity 

In content-based filtering, cosine similarity is commonly 

employed to measure the similarity between items based on 

their descriptive features. Each item is represented as a 

feature vector, such as keywords, genres, or TF-IDF scores, 

and the cosine of the angle between two such vectors is 

computed to assess how closely they are related. A cosine 

similarity score near 1 indicates a high degree of similarity 

between items, while a score closes to 0 reflects minimal or 

no similarity. This method is widely used to assess the 

similarity between any type of objects. Unlike other distance 

metrics, cosine similarity focuses on the orientation 

difference between two vectors, rather than a distance 

measure. 

 Cosine similarity plays a central role in identifying items that 

are similar to those items a user has previously interacted 

with, thereby enabling personalized recommendations based 

on item content. The similarity between two items a and b is 

calculated using the following formula (18)[12]: 

𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑎, 𝑏)= (𝑎.𝑏)

||𝑎||.||𝑏|| 

  .             (18) 

3.2.2 The Process of Content-Based Filtering (CBF) 

The content-based filtering technique operates through a 

structured and systematic process designed to generate 

personalized recommendations, as shown in Figure 8. This 

process consists of three essential stages [5]: 

 
Figure 8: Content-based filtering stages. 

1. Item Feature Representation 

The first step involves constructing detailed 

representations of items based on their inherent attributes. 

These attributes may include descriptive metadata such as 

categories, tags, keywords, genres, and other relevant features 

that define the items within the recommendation domain. By 

transforming these features into structured formats (e.g., 

feature vectors), the system facilitates efficient comparison 

and similarity assessment between items. 

2. User Feature Representation 

Next, a user profile is developed to capture the user’s 

preferences and behavioral patterns. This profile is typically 

derived from past user interactions, such as clicks, ratings, 

purchases, and search history. These interactions are analyzed 

to determine the user’s favored item features, which are then 

incorporated into the profile to reflect the user’s interests and 

preferences accurately. 
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3. Recommendation Generation 

In the final step, the recommendation engine compares 

the user profile with the available item profiles using 

similarity computation methods, such as cosine similarity. 

Items that exhibit the highest degree of similarity to the user’s 

preferences are ranked and presented as recommendations. 

This alignment ensures that the recommended items are 

highly relevant to the user’s identified interests. 

Overall, content-based filtering provides personalized 

recommendations by leveraging the relationship between 

item attributes and user preferences.  

3.3 Hybrid Filtering 

Initially, recommendation system was primarily utilized 

with single-method models, such as content-based filtering 

(CBF) and collaborative filtering (CF) being the most widely 

adopted approaches. However, these methods faced 

significant limitations. Content-based systems struggled with 

overspecialization as recommendations tend to focus 

narrowly on items similar to those already known to the user, 

while collaborative filtering methods suffered from the cold 

start problem (when there is insufficient data about new users 

or items) and data sparsity (when user interactions are 

limited).  

Hybrid filtering emerged in the late 1990s to address 

these challenges, marking a pivotal shift in recommendation 

systems research. Balabanović and Shoham [26] were the 

first proponents of integrating collaborative and content-

based filtering methods to mitigate individual weaknesses 

[26]. Over the years, hybrid recommendation systems 

attracted significant attention from researchers and emerged 

as one of the three most popular methods for generating 

suggestions in recommendation methods[27]. This popularity 

stems from their ability to combine two or more 

recommendation techniques, providing a more 

comprehensive approach to capturing user preferences.  

Hybridization can also mitigate the weaknesses of 

individual methods, resulting in a more robust 

recommendation framework. Figure 9 illustrates the concept 

of a hybrid approach that combines collaborative filtering and 

content-based Filtering. 

 
Figure 9: hybrid filtering method 

Source: [13]. 

Hybrid filtering can operate in several ways. For instance, it 

may integrate content-based filtering (CBF) into a 

collaborative filtering (CF) model, predict CBF and CF 

outcomes independently and then combine the results, or 

unify the systems into a single model [2]. 

3.3.1 Hybrid Filtering Types 

Hybrid recommendation models integrate multiple 

filtering strategies to address the limitations of individual 

approaches and enhance overall performance. As outlined by 

Ko, et al. [13], hybrid models are divided into seven 

categories according to the specific strategies used to 

combine filtering methods. These categories are summarized 

as follows: 

• Weighted Hybridization – Combines the outputs of 

different recommendation techniques by assigning 

weights, which are gradually adjusted according to the 

accuracy of predictions. 

• Switching Hybridization – Dynamically switches 

between different recommendation strategies based on 

situational factors, such as data availability or user 

context. 

• Mixed Hybridization – Generates recommendations 

by simultaneously combining results from multiple 

approaches, addressing challenges such as the cold-

start problem in new items. 

• Feature Combination – Merges item features and 

sample data, which are then processed by collaborative 

filtering, while content-based filtering operates on the 

enriched dataset. 

• Cascade Hybridization – Applies one 

recommendation model to generate an initial candidate 

list of items, which is subsequently re-ranked by 

another model to refine accuracy. 

• Feature Augmentation – Uses the output of one 

recommendation model (e.g., predicted scores or 

classifications) as input features for another 

recommendation model. 

• Meta-Level Hybridization – Employs the complete 

learned model from one approach as input to 

another, allowing the meta-level representation of user 

preferences to enhance collaboration. 

 

IV. Deep learning-based recommendation systems  

Deep learning (DL) is a subfield of machine learning that 

uses artificial neural networks to enable machines to learn in 

a way that mimics human cognitive processes. It involves 

neural networks that are composed of more than three layers, 

allowing systems to learn complex patterns and 

representations [28]. It can automatically extract complex 

patterns from large-scale, high-dimensional, and unstructured 

data sources without relying on manual feature engineering 

[5, 29] 
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 Deep learning has significantly advanced 

recommendation systems by enabling the modelling of 

complex, non-linear relationships between users and items. 

Unlike traditional linear models, deep learning architectures 

such as Convolutional Neural Networks (CNNs), Recurrent 

Neural Networks (RNNs), Autoencoders, and Transformer-

based models allow for a deeper understanding of implicit 

and explicit user feedback. These models are particularly 

effective in environments where user-item interactions are 

sparse, high-dimensional, or highly contextual [30]. Deep 

learning models in a recommendation system can be 

classified into two categories as follow: 

▪ Non-Linear Learning in Recommendation Systems 

Deep learning models capture intricate patterns in user 

behavior and item features by employing non-linear 

activation functions (e.g., ReLU, Sigmoid, Tanh) across 

multiple layers. This enables the system to learn more abstract 

representations of preferences and item characteristics than 

linear models. For example, Neural Collaborative Filtering 

(NCF) replaces inner product operations with multi-layer 

perceptrons (MLPs), allowing for more expressive 

interactions (Alam & Ahmed, 2024). Furthermore, models 

such as Deep Neural Networks (DNNs) in Wide & Deep 

architectures facilitate the learning of both memorization and 

generalization patterns, essential for balancing long-term user 

behavior with recent interests [30]. 

▪ Embeddings for Latent Feature Representation 

A cornerstone of deep learning-based recommendation 

systems is the use of embeddings. Embeddings are dense, 

low-dimensional vectors that encode semantic similarities 

between users and items. These vectors are learned during 

training and help uncover latent factors influencing user 

preferences. 

For instance, DeepFM integrates Factorization Machines 

with deep neural networks to capture both low- and high-

order feature interactions in recommendation tasks [30].. 

Similarly, models such as AutoRec use autoencoders to 

reconstruct user-item matrices, improving performance in 

cold-start and sparsity scenarios by capturing non-linear 

dependencies [30]. 

V. Evaluation Methods of Recommendation Systems 

Evaluating recommender systems is a crucial step in 

determining their effectiveness, robustness, and practical 

applicability. This section outlines the key methods used to 

assess recommender systems, which are organized into three 

main components:  

5.1 Evaluation Protocols 

For evaluation, datasets are typically split into three 

parts: training, validation, and test sets. The training set is 

used to fit the model, while the validation set helps fine-tune 

the model by adjusting hyperparameters and preventing 

overfitting through techniques like early stopping. The 

model’s final performance is then assessed using the test set. 

In some situations, only training and test sets are used without 

a separate validation set [31]. 

5.2  Evaluation Metrics 

Since the inception of research on recommender systems 

(RS), evaluating the accuracy of predictions and 

recommendations has become increasingly important. To 

assess the effectiveness of various recommendation 

techniques, methods, and algorithms, the field relies on 

specific quality indicators and performance metrics. The 

choice of evaluation metrics depends not only on the filtering 

approach used but also on the characteristics of the dataset 

and the nature of the recommendation tasks being performed. 

The most widely adopted metrics include: 

1. Mean Absolute Error (MAE) 

MAE is a commonly employed evaluation metric in 

recommender systems. It measures the average absolute 

difference between predicted ratings and the actual ratings 

assigned by users. A smaller MAE value signifies higher 

accuracy in capturing user preferences. The computation of 

MAE is expressed by formula (19) [24]: 

MAE = 
𝟏

𝑵
 ∑ ∣  𝒑𝒖,𝒊𝒖,𝒊 − 𝒓𝒖,𝒊 ∣ .                  (19) 

 

Here,  𝑝𝑢,𝑖  is the predicted rating for user u and item i,  𝒓𝒖,𝒊 is 

the actual rating, and N is the total number of predictions. 

2. Root Mean Square Error (RMSE) 

RMSE is a statistical accuracy metric commonly used in 

evaluating recommender systems. Unlike MAE, RMSE 

focuses more on larger absolute errors, making it particularly 

sensitive to outliers or poor predictions. As a result, it tends 

to yield higher values than MAE. A lower RMSE indicates 

that the recommendation model provides more precise 

predictions. The RMSE is calculated using the  formula (20) 

[24]: 

RMSE= √
𝟏

𝑵
∑ (𝒓𝒖,𝒊 − 𝒓𝒖,𝒊

^ )
𝟐

𝒖,𝒊      .               (20) 

 

Where 𝒓𝒖,𝒊 is the actual rating, 𝒓𝒖,𝒊
^  is the predicted rating, and 

N is the total number of user-item pairs evaluated. 

3. Precision and Recall 

Precision refers to the proportion of recommended items 

that are relevant to the user, while recall measures the 

proportion of the relevant items that have been successfully 

recommended out of all relevant items that should have been 

recommended [32]. In this context, a relevant item aligns with 

the user's preferences. When evaluating a classification 

model, Precision and Recall are two key metrics used to 

understand how well your model is performing, particularly 

when dealing with imbalanced data or binary classification 

problems [33]. These metrics are derived from the confusion 

matrix, which summarizes the results of predictions versus 
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actual outcomes. Table 3 presents a confusion matrix to 

illustrate how Precision and Recall are calculated. The 

confusion matrix outlines four possible outcomes of a 

recommendation. If a recommended item is relevant to the 

user, it is counted as a True Positive (TP); if a relevant item 

is not recommended, it is a False Negative (FN). Conversely, 

recommending an irrelevant item results in a False Positive 

(FP), while correctly not recommending an irrelevant item is 

a True Negative (TN). 

 

Table 2 

A confusion matrix for a recommendation system. 

 
Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

 

In this confusion matrix: 

Precision measures the proportion of correctly predicted 

positive instances among all predicted positives [34]. High 

precision score indicates fewer false positives, making it 

useful in systems where incorrect recommendations can 

negatively affect user experience or trust [35, 36]. It is 

calculated as in equation (21): 

Precision = 
𝑻𝑷

𝑻𝑷+𝑭𝑷
  .                         (21) 

Where 𝑇𝑃 is True Positive (TP) and FP False Positive 

(FP). Recall measures the ability of the system to identify all 

relevant items [34]. A high recall score indicates that the 

system successfully retrieves the most relevant items [37, 38]. 

It is computed as in formula (22): 

Recall =
𝑻𝑷

𝑻𝑷+𝑭𝑵
  .                           (22) 

Where 𝑇𝑃  is True Positive (TP) and 𝐹𝑁  is False 

Negative (FN). 

4. F-measure (F1-score) 

The F1-score is an evaluation metric that integrates 

Precision and Recall into a single measure. Precision denotes 

the proportion of recommended items that are relevant, 

whereas Recall represents the proportion of relevant items 

successfully recommended. The F1-score, also known as the 

F-measure, is calculated as the harmonic mean of these two 

metrics, ensuring that the value is high only when both 

Precision and Recall are sufficiently strong [24, 39]. This 

metric is particularly valuable in scenarios where minimizing 

both false positives and false negatives is crucial, such as 

spam detection or personalized content recommendation [39, 

40]. Its computation is given in formula (23):  

F1 − score =  
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏×𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
  .               (23) 

 

5. Accuracy Matrix 

Accuracy is among the simplest and most widely applied 

metrics for assessing the effectiveness of classification and 

recommendation systems. It represents the ratio of correctly 

predicted instances—encompassing both true positives and 

true negatives—to the total number of predictions, as defined 

in Equation (24) or (25):  

Accuracy = 
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒐𝒓𝒓𝒆𝒄𝒕  𝒓𝒆𝒄𝒐𝒎𝒆𝒏𝒅𝒂𝒕𝒊𝒐𝒏𝒔

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐 𝒇 𝒓𝒆𝒄𝒐𝒎𝒎𝒆𝒏𝒅𝒂𝒕𝒊𝒐𝒏𝒔
 .    (24) 

Or: 

Accuracy = 
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+ 𝑭𝑵
  .                              (25) 

Where, TP = True Positives, TN = True Negatives, FP = 

False Positives, and FN = False Negatives. 

6. Normalized Discounted Cumulative Gain 

(NDCG) 

NDCG is a widely used evaluation metric in 

recommendation systems and information retrieval, 

especially in ranking-based tasks. It incorporates both graded 

relevance (i.e., the value of user ratings) and the position of 

recommended items in a ranked list. It measures how well a 

recommendation system ranks items based on both the 

relevance of recommended items and their position in the 

recommendation list.  [41]. The NDCG is calculated as 

follows equation (26) [42]:  

NDCG@k =  
𝟏

𝐈𝐃𝐂𝐆@𝒌
 ∑

𝟐𝒓𝒆𝒍𝒊  −𝟏

𝒍𝒐𝒈𝟐(𝒊+𝟏)
𝒌
𝒊=𝟏   .                     (26) 

In this formula, 𝑟𝑒𝑙𝑖 
 denotes the graded relevance score 

(e.g., a user rating) of the item at position i in the 

recommended list. The numerator represents the Discounted 

Cumulative Gain (DCG), which accounts for the position of 

relevant items using a logarithmic discount to prioritize 

higher-ranked results. The denominator, IDCG@k, is the 

Ideal DCG and reflects the maximum possible DCG 

obtainable from a perfectly ranked list. By normalizing DCG 

with IDCG, the resulting NDCG@k score ranges between 0 

and 1, where a value of 1 indicates a perfectly ranked 

recommendation list. 

5.3 Comparison with Existing Studies  

To situate this research within the broader scholarly 

landscape, it is essential to compare the selected evaluation 

methods and findings with those of existing studies. Such 

comparisons highlight methodological similarities and 

differences, reveal gaps in current research, and demonstrate 

how the present work advances knowledge in the field of 

recommender systems. To ensure fairness and reliability, this 

study compares its results with prior research that employed 

the same datasets and evaluation metrics, thereby enhancing 

the validity of cross-study comparisons and ensuring 

methodological consistency. 
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VI. The Common Challenges in RSs 

Recommendation systems, while pivotal in enhancing 

user experience and engagement across various platforms, 

face several persistent challenges that impact their 

effectiveness and scalability. The primary challenges faced 

by recommendation systems are concisely presented below 

• Cold Start Issues 

The cold start problem arises when a recommendation 

system must handle new users or items without any prior 

interaction data, which considerably undermines the 

effectiveness of collaborative filtering (CF) methods [2]. This 

challenge typically appears in three cases: (a) the arrival of a 

new user, (b) the addition of a new item, or (c) the creation of 

a new user group or community. Because CF relies 

extensively on historical user–item interactions, it faces 

difficulties in generating reliable recommendations when 

such information is unavailable.  

The cold start problem arises when a recommendation 

system must handle new users or items without any prior 

interaction data, which considerably undermines the 

effectiveness of collaborative filtering (CF) methods [2, 24]. 

This challenge typically appears in three cases: (1) the arrival 

of a new user, (2) the addition of a new item, or (3) the 

creation of a new user group or community. Because CF 

relies extensively on historical user–item interactions, it faces 

difficulties in generating reliable recommendations when 

such information is unavailable[24].  

• Data Sparsity Issue 

Data sparsity is major challenge in developing effective 

recommendation systems. This issue arises when the user–

item interaction matrix, employed in collaborative filtering 

(CF), contains far fewer observed interactions than the total 

number of potential ones [43]. In large-scale systems, users 

typically interact with only a limited subset of items, 

producing a highly sparse matrix with insufficient 

information to capture meaningful relationships between 

users and items [44]. Such sparsity severely hampers the 

performance of CF algorithms, which rely on past 

interactions to compute user–user or item–item similarities. 

When most matrix entries remain unfilled, estimating these 

similarities becomes unreliable, often resulting in weak or 

irrelevant recommendations [45]. 

• Scalability  

Scalability in recommender systems denotes the capacity to 

preserve efficiency, responsiveness, and accuracy as the 

numbers of users, items, and interactions increase. In large-

scale digital settings, such as e-commerce and streaming 

platforms, scalability ensures that recommendations remain 

timely and relevant without compromising system 

performance. However, traditional approaches, particularly 

those grounded in collaborative filtering and matrix 

factorization, often struggle to scale effectively due to 

heightened computational demands and the challenges posed 

by data sparsity [4]. 

• Over-Specialization Issue 

Over-specialization in recommender systems occurs when the 

system repeatedly recommends items that are too similar to 

those a user has already preferred, thereby reducing diversity 

and novelty in the suggestions. This problem is especially 

pronounced in Content-Based Filtering (CBF), since such 

methods depend primarily on item feature similarities.[46]. 

• Grey Sheep Issue 

The grey sheep problem arises in recommender systems when 

certain users exhibit unpredictable or inconsistent preferences 

that differ significantly from the majority. Unlike typical 

users who consistently align with identifiable behavior 

patterns, grey sheep users occasionally agree with many 

groups but do not closely match any particular one [47, 48]. 

This inconsistency makes it difficult for collaborative 

filtering (CF) algorithms, especially those based on user 

similarity, to produce accurate recommendations for these 

users. 

• Diversity Issue 

In many cases, recommender systems may provide 

suggestions that are either closely related or deliberately 

diverse. However, the most accurate predictions often emerge 

from emphasizing similarities among users or items, which 

gives rise to the diversity problem—recommendations 

concentrate on commonalities while overlooking differences. 

Consequently, users are exposed to a narrow range of content 

and may miss less popular but highly relevant niche items. 

This issue is particularly evident in collaborative filtering 

(CF) systems. Since CF depends on historical user–item 

interactions, it tends to reinforce the popularity of frequently 

rated or consumed items, resulting in many users receiving 

similar popular recommendations. This dynamic produces 

popularity bias, whereby niche or long-tail items are 

marginalized despite their potential relevance to individual 

users [49, 50]. As a result, users often encounter a restricted 

set of items, limiting opportunities for discovery and 

personalization. Such effects can undermine both user 

satisfaction and fairness, particularly for individuals with 

distinctive preferences or those seeking non-mainstream 

content.  

VII. Conclusion and future work 

Recommender systems (RSs) have become 

indispensable in addressing the challenge of information 

overload by providing users with personalized and relevant 

suggestions. This paper reviewed the historical development 

of RSs, traditional methods such as collaborative and content-

based filtering, as well as the emergence of hybrid 

approaches. It also highlighted the transformative role of deep 

learning models, which have significantly advanced the 

capacity of RSs to capture complex user–item relationships 

and integrate multimodal data. Furthermore, evaluation 
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methods and metrics were discussed, underscoring their 

importance in systematically assessing the effectiveness of 

recommendation models. The study also synthesized the key 

challenges currently facing RSs, including data sparsity, 

scalability, diversity, over-specialization and cold-start 

issues. In future work, researchers plan to review cross-

domain and transfer learning approaches in recommender 

systems, focusing on how knowledge transfer across domains 

can improve personalization and mitigate challenges such as 

data sparsity and the cold-start problem. 
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