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Abstract—This study proposes aCell, a new artificial 

cell model for exploring computation in nature using 

artificial chemistry. The model represents molecules as 

spheres and simulates chemical reactions through 

collision-based rewriting rules. Cell components like 

membranes are modeled abstractly. Experiments 

demonstrate aCell's capabilities in forming larger 

molecules from basic building blocks, modeling 

reversible reactions, implementing logic gates, storing 

state, and solving optimization problems. The unified 

framework supports simulating both essential biology 

and computation using the same artificial chemistry 

constructs. aCell provides a flexible platform for 

investigating information processing in natural cells 

and bio-inspired computing. 

Keywords: Simulation System, Artificial Cell, 

Computation, Artificial Chemistry, Artificial 

Life 

1. INTRODUCTION 

Natural computing has three main branches. They are 

computing inspired by nature, synthesis of natural 

phenomena in computers and computing with natural 

materials [1]. Artificial life (“AL” or “Alife”) is an area 

of studies under the second branch of natural computing. 

Its main goal is to study life by creating virtual entities 

which have life-like behaviors. According to one of the 

pioneers of Alife, C. Langton, artificial life is the study of 

synthetic systems that exhibit behavioral characteristics 

of natural living systems. It complements the traditional 

biological sciences concerned with the analysis of living 

organisms by attempting to synthesize life-like behaviors 

within computers and other artificial media [2]. It also 

complements the field of artificial intelligence by 

identifying the source of intelligent rational behaviors 

from the bottom up instead of top down. 

Research on artificial life can be conducted at 

various levels, from cell, tissue, organ, organ system, 

organism, population and community to ecosystem. 

Much research work has been done to simulate 

processes and life-like behaviors of entities such as 

cells, neurons, genes, immune systems, membranes, 

plants, bacteria and swarms of animals like ants, 

termites, bees, spiders, fish and birds [3]. Among the 

entities, simulation of cells is especially important 

because cells are the basic building blocks of life. 

Cells can grow, reproduce, process information and 

respond to stimuli. An exceptionally large variety of 

cells exist in varied sizes and shapes. Some move 

and have changing structures while some are 

stationary and have stable structures. Organisms on 

earth exist as a single cell or contain up to trillions 

of cells [4].  

Nowadays, with the knowledge gained from 

molecular cell biology, it is difficult to deny that powerful 

information processing capabilities exist in a cell. A cell 

presents a rich area of exploration for synergies between 

biology and computation. Research into the information 

processing capabilities of a cell can provide a better 

insight into both biology and computation. It has the 

potential to reveal the similarities and differences 

between computation designed by humans and 

computation that occurs in nature. If a good working 

model of a cell can be created, even if only partially 

realistic and highly abstracted, the general behaviors of 

cells can be studied from the perspective of computer 

science. Algorithms in nature can be learned through the 

model. With the ever-increasing adoption of artificial 

intelligence in information systems, discovery of new 

artificial intelligence algorithms can enhance the 
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capabilities of information systems. Alife as a form of 

bio-inspired computing is a major area of investigation. 

For simulating cells in the context of Alife, 

artificial chemistry (“AChem”) is one of the 

approaches used. It is an approach used to model 

biochemical molecules and simulate the chemical 

reactions of these molecules at a high abstract level. 

It attempts to capture fundamental properties of 

biochemistry without modeling specific actual 

chemical processes [5]. Chemical molecules are 

commonly represented with alphabets like A, B, 

C, ... in AChem for abstraction. Artificial cells are 

cells simulated with AChem and programming 

codes.  

In this paper, a new artificial cell model based on 

AChem is proposed. We shall call the model aCell 

for ease of reference in this paper.  The research 

objective of aCell is to propose an artificial cell 

model for exploring computation in nature, using 

artificial chemical reactions with minimal usage of 

programming codes. aCell aims to be grounded to 

cell biochemistry to enable relatively easy direct 

mapping of real-life cell biochemical reactions to 

aCell reactions. Furthermore, reactions and 

molecules are to be used as much as possible to 

simulate the behavior of cells and to sense the status 

of cells. 

aCell is built on top of the foundation laid by the 

organic builder [6] and membrane computing [7], [8]. 

Membrane computing and the organic builder both 

employ AChem. They both simulate molecules and 

chemical reactions using rewriting rules. 

The membrane computing model is a model capable 

of computation by mimicking membranes and cell 

behavior. However, it operates in an abstract manner 

forgoing the simulation of physical properties of 

molecules such as the locations of molecules, the 

movement of molecules and the triggering of reactions 

based on collisions. Reactions can occur when the 

necessary molecules exist within a membrane regardless 

of the locations of the molecules (Fig. 2).  

On the other hand, the organic builder is a model not 

proposed for computation. It is proposed to simulate 

molecules and reactions in a simulation space which has 

molecules moving about freely (Fig. 1). The molecules 

can react when they collide based on a list of defined 

reactions. It simulates the physical properties of 

molecules such as their locations, their movement and 

molecular bonds. It has been shown to be able to simulate 

cell membranes, cell reproduction and gene mutation. 

aCell combines the major features of the membrane 

computing model and the organic builder so that these 

two models can complement each other. aCell uses its 

own methods to simulate endothermic and exothermic 

reactions, an explicit flow of molecules into and out of 

the simulation space, cell membranes, cell DNA, changes 

to membrane permeability based on the energy levels of 

cells, aging of cells, cell reproduction and cell mutation 

based on cell fitness levels. Furthermore, the simulation 

space of aCell is a 3D space instead of a 2D plane. 

The next section describes existing research work 

related to aCell. It is followed by descriptions of the 

building blocks of aCell in section 3 and the processes of 

aCell in section 4. Section 5 presents the experiments 

conducted to verify the capabilities of aCell. Section 6 

discusses the significance of aCell, and section 7 presents 

the conclusion of this paper. 

2. LITERATURE REVIEW 

There are broadly three areas of research work related 

to aCell. They are simulation of chemistry, simulation of 

cells and computation using artificial cells or artificial 

chemistry. They are described briefly in the following 

subsections. Thereafter, the features adopted by aCell are 

described. 

2.1. Simulation of Chemistry 

In this subsection, five notable approaches to 

simulating biochemistry are described. These approaches 

are used to investigate natural chemical reactions. 

The Organic Builder [6], [9] is an artificial chemistry 

system where the atoms are represented as circles moving 

around randomly in a two-dimensional area. The atoms 

can react among themselves according to preset reactions 

rules when they collide with each other. They can also 

form bonds among themselves to form molecules. Fig. 1 

illustrates how a simulation space in the Organic Builder 

can look like. This example contains molecules a2, b0, c0 

and d1. The line between two molecules is the molecular 

bond between them. Molecules forming a loop by 

molecular bonds are considered a cell. In the example, 

molecule d1 is the DNA molecule in a cell. Reactions i) 

b0 + b0 => b0b0 where two molecules bond together, and 

ii) b0b0 + c0 => a2c0 where two bonded molecules are 
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transformed to two other bonded molecules are examples 

of reactions supported. 

The Organic Builder has been used to discover the 

reaction rules needed for the processes involved in cell 

reproduction. DigiHive [10] has further enhanced this 

line of work by adding more features closer to the real 

world. 

 

 

Fig. 1: An example of the Organic Builder. 

An attempt to bring chemically realistic model to 

AChem is the synthon approach [11]. The purpose is to 

use a model of atoms and molecules to study the physical 

properties of complex chemical reactions. A synthon is 

defined as 𝑆(𝐴) = 〈𝑊, 𝐴, 𝑅, 𝐸〉  where 𝑊 is the set of 

vertices representing virtual atoms, 𝐴 is the set of vertices 

representing atoms, 𝑅 is the vertices representing the 

electrons explicitly modeled and 𝐸 is the set of edges 

associating vertices from sets 𝑊 to 𝐴 and from sets 𝐴 to 

𝑊. The virtual atoms are used to represent the part of a 

molecule that is not relevant to the reactions under 

investigation. A reaction is defined as 𝑆(𝐴)
𝑇
⇒ 𝑆′(𝐴). A 

tool based on the synthon model has been used 

successfully to visualize polymerization and de-

polymerization reactions. 

BioDrive [12] is an artificial chemistry model which 

models the reactions of molecules using differential 

equations. Concentration of each type of molecules in the 

system is used to determine the reaction rate. Reactions 

are expressed using differential equations and the effects 

of a reaction on other reactions are modeled 

mathematically. The precise locations of molecules are 

not taken into consideration in this model. Changes in 

concentrations of molecules against time can be 

calculated by solving the differential equations. 

Another approach to simulate chemistry is an 

approach which uses squares and tiles [13]. Squares are 

used to represent the basic elements to configure tiles of 

different shapes and sizes. The squares and tiles are 

placed in a well-mixed 'soup' in which they are randomly 

chosen to collide. The result of a collision is a change to 

the size and shape of the tiles. This change represents a 

chemical reaction. This model has been applied to the 

investigation of the growth and the decomposition of 

complex molecules in chemistry. 

[14] proposed an AChem model based on strings of 

characters. In the model, a text character is used to 

represent an atom and a string of characters is used to 

represent a molecule. A set of recombination rules 

function as reactions to transform the connected strings 

from one configuration to another. This model has been 

applied to model complex biochemical reactions such as 

oxidation of fatty acids and DNA related biochemical 

reactions such as replication, transcription and translation. 

With the introduction of membrane molecules, this model 

has been extended to include membrane structures and to 

enable movement of molecules across membranes [15]. 

Simulation of Cells 

Simulation of natural cells at low level is extremely 

complex research. It is also hampered by the incomplete 

knowledge we currently have about a cell. Therefore, 

related research work in this section normally focuses on 

certain selected cell processes only. The exception is E-

CELL which attempts to mathematically simulate a 

single cell or a group of cells. 

E-CELL [16]–[18] is a multi-algorithm, multi-

timescale cell simulator. It focuses on simulating 

biochemical interactions and components within a single 

cell mathematically without using virtual matters like 

atoms or molecules. It is efficient for large scale 

simulations of different timescales. E-CELL has been 

used to investigate the global behaviors of the liver.  

A model that can generate complete organisms 

possessing metabolism and morphology from a single 

initial cell was proposed by [19]. It was later extended to 

use L-systems [20]. It is a hybrid model combining 

AChem and L-systems. The model simulates a cell 

growing into an organism of cells in a 2-D grid which 

contains chemical molecules. Chemical reactions in this 

model consume or produce energy besides producing 

new chemical molecules. The action list of the simulated 

cells contains actions to absorb or release chemical 

molecules, consume energy, transform a molecule to 

another via a reaction rule, perish and reproduce new 
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cells. To grow an organism in an environment, a genetic 

algorithm is used. The genetic algorithm is applied to 

evolve two different chromosomes in the organism, one 

specifying the rules of growth and another specifying 

cellular actions. Balanced creatures and actions that can 

develop a suitable metabolism system in an environment 

are favored in the evolution of the two chromosomes. 

With this model, artificial creatures that can survive in an 

environment have been created successfully and they 

have self-healing abilities.  

Although it is not based on AChem but a physical rule 

of motion, PPS (Primordial Particle System) [21], [22] is 

able to produce emergent behavior of particles forming 

cells when a certain combination of parameter values is 

used.  The cells can reproduce, restructure themselves 

and form a life-like system. aCell does not use the 

discovery made with PPS because linking it to AChem is 

currently beyond the scope of aCell. However, it is worth 

noting as an example that AChem may not be the simplest 

way to simulate a cell. 

2.2. Computation Using Artificial Cells or Artificial 

Chemistry 

There are three main research areas using cells and 

chemistry as inspiration to find new computational 

approaches. They are membrane computing, cellular 

automata and evolutionary computation. For 

computational efficiency, abstraction is normally used to 

avoid computing the sophisticated internal processes 

involved.  

Membrane computing is an area of computer science 

that aims to abstract computing ideas and models from 

the structure and the functioning of living cells. A system 

based on membrane computing has multi-sets of objects 

encapsulated in membranes. The objects and the 

membranes evolve according to some rules and the 

membranes function as compartments to ensure that 

specific objects only evolve according to certain rules 

locally within certain membranes. Fig. 2 shows an 

example of a simple membrane computing system. There 

are four membranes labeled 1 to 4. Objects ab are 

encapsulated in membrane 4 and there are two local rules 

in the membrane. Rule b->bc can transform ab to abc. 

Thereafter, b->bc or c->aδ can transform abc. If 

more than one rule is applicable, then one rule is selected 

randomly. If b->bc is selected, abc will be transformed 

to abcc. If c->aδ is selected, abc will be transformed 

to aba and membrane 4 will be dissolved. aba is then 

considered to be in membrane 3. If membrane 4 is 

dissolved, the rules in membrane 4 will no longer be used 

and the rules in membrane 3 will be used instead. The 

symbol δ is a directive to dissolve a membrane. 

Transformation in the system continues until no further 

transformation can happen. When that happens, the 

system is halted.  

Membrane computing has been used successfully to 

solve various computation problems such as the 

satisfiability problem [23] and robot path planning [24]. 

Tools such as P-Lingua [25], [26] have been developed 

to facilitate simulation of membrane systems. 

Fig. 2: A simple membrane computing system. 

Cellular automata [27] consist of a lattice of 

interconnected finite state machines called cells, a set of 

allowable states and a transition function. The alteration 

of cell states occurs synchronously governed by a local 

transition function and the states of neighboring cells. 

Artificial chemistry can be thought of as cellular 

automata where the cells can move around [9]. Cellular 

automata have been used successfully in solving 

problems in nature and computer science such as 

simulating mangroves rehabilitation [28], robot path 

planning [29] and edge detection [30]. 

Evolutionary computation [31], [32] is a computing 

method inspired by the reproduction, mutation and 

crossover of cell DNAs. The chromosomes consisting of 

genes of a DNA are used to encode fitness parameters. 

The fitness parameters are evaluated using a fitness 

function in which an evolutionary computing method will 

attempt to find a global minimum or a global maximum. 
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Starting with an initial population of DNAs, the search is 

conducted until a target is found or a certain preset 

number of generations have been explored. 

2.3. Comments 

From the literature reviewed above, it can be seen that 

there are two different approaches in the current research 

of artificial chemistry and artificial cells. One is to model 

chemistry and cells for analysis and prediction, and 

another is to compute using concepts in chemistry and 

cells. Research work related to the first approach is 

Synthon, Biodrive, ECELL, tile based AChem, string 

based AChem and the Organic Builder. Research work 

related to the second approach is cellular automata, 

evolutionary computation and membrane computing. 

aCell proposed in this research work represents an 

attempt fill in the gap between these two approaches by 

bringing them closer. 

The description below explains why the Organic 

Builder from the first approach and membrane computing 

from the second approach are chosen as two starting 

points of aCell and highlights how aCell differs from 

existing research work. 

Among the current research, the Organic Builder 

shows potential for simulating cell processes using 

molecules explicitly. Therefore, its approach is adopted 

in aCell while mathematical simulation which is used in 

BioDrive and E-CELL is not adopted. aCell extends the 

approach of the Organic Builder further by simulating 

artificial molecules and cells in a 3-D space instead of a 

2-D space. The synthon approach is too detailed for aCell 

because aCell needs to strike a balance between serving 

the needs of AChem and computation. String based 

AChem does not support detailed simulation of molecule 

movement from one location to another in a simulation 

space. Although tile based AChem supports that, the way 

the Organic Builder simulates movement is still closer to 

what aCell intends to achieve. 

The main difference between aCell and E-Cell is the 

focus on the simulation of individual molecules and the 

use of uniform timescale. Although this is not be efficient 

enough for the simulation of a large number of molecules, 

it is useful for investigating every detail at the molecular 

level. This level of investigation is still needed when 

there are still gaps in our understanding of biological cells. 

Following the research reported in [19], aCell uses the 

concept of morphogenesis and cell reproduction. 

However, the shape formed by cells in aCell is a simple 

one following just the shape of the simulation space. The 

concept of food is used by aCell, but food input is carried 

to cells by an input flow of molecules instead of being 

placed in advance in a simulation space. As cell death 

encourages more renewal and exploration, aCell uses an 

age limit to simulate programmed cell death. 

aCell uses the concept of membrane found in 

membrane computing to enhance the efficiency of 

computation and to compartmentalize certain chemical 

reactions. However, it only supports one membrane per 

cell and does not support a hierarchy of membranes per 

cell as in membrane computing. As the concepts of 

rewriting rule of membrane computing and the Organic 

Builder are closely related, aCell uses the features of their 

rewriting rules with some modifications to specify 

chemical reactions. 

As membrane computing and the Organic Builder are 

two directly related work to aCell, a detailed feature list 

is presented in Table 1 to show the features adopted by 

aCell. How aCell implements the features will be 

described in the following two sections of this paper. 

 

Table 1: Features adopted by aCell. 

 Features Membrane 

Computing 

The 

Organic 

Builder 

aCell 

 AChem    

1 Molecules √ √ √ 

2 Molecular bonds  √  

3 Coordinates of 

molecules and 

cells 

 √ √ 

4 An explicit flow 

of molecules 

into and out of 

the simulation 

space 

√  √ 

5 3D simulation 

space 

  √ 

6 Reactions 

triggered by 

collisions or 

proximity 

 √ √ 

7 Endothermic and 

exothermic 

reactions 

√  √ 

8 Rewriting rules 

for reactions 

√ √ √ 

 Artificial Cell    

9 Cell mutation √ √ √ 

10 Aging of cells √  √ 
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11 Changes to 

membrane 

permeability 

based on the 

energy levels of 

cells 

√  √ 

12 Single layer of 

cell membrane 

√ √ √ 

13 Multiple layers 

of cell 

membrane 

√   

14 Cell DNA  √ √ √ 

15 Cell 

reproduction 

√ √ √ 

3. THE BUILDING BLOCKS OF ACELL 

The aCell model has two major parts: the building 

blocks and the processes of the model. The building 

blocks will be described first in the following subsections 

followed by the last subsection which explains the 

reasons for the design decisions made. The next section 

will describe the processes. 

There are four building blocks in the model. They are 

the definition of a molecule or an atom, the definition of 

a cell, the reaction among a group of molecules and the 

simulation space. 

3.1. The Definition of a Molecule or an Atom 

A sphere with a radius of one unit length is used to 

represent a molecule or an atom. The radius is a constant 

regardless of the actual size of the molecule represented. 

A molecule in this model can have one to 𝑛 atoms. 

Each molecule has an ID, a name and a state number. 

The ID is a unique identifier in the system and the name 

can be a chemical name (𝐻2𝑂), a common name (water) 

or a generic name (𝐴, 𝐵, 𝐶, … ) . The state number 

accounts for the shape of the molecule and the electrical 

charges held by the molecule. The range of the state 

number is from zero to the maximum positive integer 

value supported by the programming language used to 

implement the model. 

Fig. 3(a) shows a simulation space of aCell with ten 

molecules and four cells. In this example, the molecules 

are colored green, and the cells are colored brown. The 

colors can be set to any colors as needed. The simulation 

space is 40-unit length at each dimension.  

 

 
Fig. 3: An example of aCell simulation space at time 

step 0 and time step 700. 

Each molecule in Fig. 3(a) has an ID number, a name 

and a state number. However, to avoid clutter, only one 

molecule is shown with its description label. At the 

location (24, 14, 39), there is a molecule with the ID 

number 7. Its name is Food, and it has a state number of 

1. The character ‘-’ is just a text separator to separate the 

name from the state number. For visualization only, a 

character of either ‘I’ or ‘O’ is displayed on the right side 

of the state number to indicate whether the molecule is 

“Inside” or “Outside” the membrane of a cell. It is not 

part of the name of a molecule. The coordinates of the 

molecule shown are also for the purpose of visualization 

only. Fig. 3(b) shows how the simulation space can look 

like at time step 700 after new molecules are inserted and 

reactions have occurred. 

3.2. The Definition of a Cell 

A sphere with a radius of one unit length and with the 

name DNA is a special molecule used to represent the 

DNA of a cell. It is always stationary and is positioned at 

the center of a cell and enclosed within a cell membrane. 

The name of the DNA molecule can be changed to other 

more descriptive names if necessary. The distance from a 

DNA molecule to its membrane is fixed at 3-unit length. 

The value 3 is an arbitrarily set number and it can be 

changed to a different distance if needed. It is set to be 

the same as the distance required for molecules to be 

within close enough proximity for a reaction to occur. 

This enables all molecules within a cell to be close 

enough for them to react among themselves. More details 

about reaction and close proximity will be explained in 

the next section. In Fig. 3(a), there is a DNA molecule 

with the ID number 3 and a state number of 1 at location 

(5, 15, 35).  

The center of each cell, which has a DNA molecule, is 

placed 10-unit length apart from the DNA molecules of its 

neighboring cells. This rule of placement is followed 
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when a new cell is reproduced. This predefined distance 

for the placement of a new cell prevents the cells in a 

simulation space from being packed too tightly together 

and blocking molecules from moving between two cells. 

The inter-cell distance can be changed depending on the 

needs of a simulation. 

The membrane of a cell resists movement of 

molecules into and out of a cell. This resistance allows a 

cell to accumulate inside its membrane the molecules it 

needs, such as food molecules. It also prevents molecules 

which a cell does not need, such as waste molecules from 

entering. This mechanism of impediment will be 

described further in the next section together with the 

description of the movement of a molecule. 

For each type of molecules used in a simulation, two 

membrane resistance values need to be specified. One is 

when the molecule is entering a cell and another is when 

the molecule is exiting a cell. The value can be an integer 

value between 0 and 100 where 0 means no resistance and 

100 means total resistance. When a molecule is going to 

move though a membrane, a random integer between 1 to 

100 is generated to assess whether the move succeeds. If 

the integer is greater than the resistance value, the move 

succeeds, and fails if it is otherwise. 

3.3. Reactions Among Molecules 

A reaction in the aCell model is specified with a 

statement using the following syntax. 

 

ID = 𝑛 

Energy = 𝑒 

𝑥1 + 𝑥2 + .. + 𝑥𝑚  -> 𝑦1 + 𝑦2 

+ .. + 𝑦𝑛 

 

𝑛  is a positive integer used to specify the unique 

identifier of a reaction. 𝑒 is the amount of energy needed 

for the reaction to occur or the amount of energy released 

by the reaction. A positive energy value indicates the 

amount of energy added to the simulation space (for an 

exothermic reaction) while a negative value indicates the 

amount of energy subtracted from the simulation space 

(for an endothermic reaction). 𝑥1 , 𝑥2 , …, 𝑥𝑚  and 𝑦1 , 

𝑦2, …, 𝑦𝑚 each represents a molecule or an atom. Some 

examples are shown in Table 2. 

There are only two operators in a reaction statement. 

The operator ‘+’ indicates that the reactants (on the left-

hand side) are all in close proximity among themselves 

and the products (on the right-hand side) are all in close 

proximity among themselves. Close proximity is defined 

as within a distance of 3-unit length apart. The operator 

‘->’ indicates the direction of the reaction. When the 

energy requirement is fulfilled and the reactants are in 

close proximity, the reactants are transformed into the 

products which are also placed in close proximity. The 

character ‘-’ is not an operator. It is just a text separator. 

 

Table 2: Two examples of the reaction syntax. 

Reaction 𝐻2𝑂 ⇌ 𝐻+ + 𝑂𝐻− 

Syntax ID = 1 

Energy = 1 

H2O-1 -> 

H-2 + OH-3. 

 

ID = 2 

Energy = -1 

H-2 + OH-3 -> 

H2O-1. 

Reaction 𝐶6𝐻12𝑂6 + 6𝑂6 → 6𝐶𝑂2 + 6𝐻2𝑂 

Syntax ID = 1 

Energy = 5 

C6H12O6-1 + O2-1 + O2-1 + O2-1 + 

O2-1 + O2-1 + O2-1 -> 

CO2-1 + CO2-1 + CO2-1 + CO2-1 + 

CO2-1 + CO2-1 + H2O-1 + H2O-1 + H2O-

1 + H2O-1 + H2O-1 + H2O-1. 

 

Although the amount of energy consumed or released 

by a reaction should ideally be mapped appropriately to 

reality, it is currently set arbitrarily. A correct mapping 

scheme is considered as future research work to be done 

together with biochemists. Similarly, the state number of 

a molecule is also set arbitrarily.  

For a reaction to occur, sufficient local energy and the 

presence of all the molecules on the left-hand side in 

close proximity are needed. Based on the total amount of 

global energy E, specified before a simulation run, the 

amount of local energy at each coordinate is calculated as 

𝐸/𝑉 where 𝑉 is the volume of the simulation space. 

3.4. The Simulation Space 

The length of each dimension of the simulation space 

can be preset to any value and needs not be the same for 

all dimensions. The six sides of the simulation space can 

each have a wall or nothing. The top side and the bottom 

side are usually left open to allow the flow of molecules 

into and out from the simulation space as shown in Fig. 

4. Without a wall, if a molecule moves beyond a 



8 

 

boundary of a side, the molecule is removed from the 

simulation. If there is a wall, the molecule stops moving 

and stays in place. 

 

 

Fig. 4: A simulation space walled up at four sides. 

3.5. Simplifications Adopted by aCell 

By keeping the size of every molecule and atom the 

same in aCell, aCell sacrifices the modeling of physical 

dimensions. This means whether it is a big molecule or a 

small one, it will still fit into the same spot in a simulation 

space resulting in inaccuracies in the location and volume 

of molecules. However, this design decision has its 

advantage. The movement of molecules will be much 

easier to simulate because rotation of molecules need not 

be taken into the consideration. 

It is common in nature for a large molecule to have 

reactions occurring simultaneously with various other 

molecules at different parts of the large molecule. With 

the reaction rule of aCell, simultaneous reactions can still 

be simulated regardless of whether size is taken into 

consideration, although the actual physical locations 

where the reactions occur simultaneously will be 

inaccurate. As long as all the molecules reacting with the 

large molecule are on the left-hand side of a reaction rule, 

the reaction will be processed as a reaction occurring at 

the same time. 

Furthermore, when there is insufficient or imprecise 

knowledge in biochemistry, abstract molecules will often 

be used in aCell. In this case, the correct size of an 

abstract molecule will be inaccurate anyway. 

Proximity, not collision, is used to trigger a reaction 

in aCell. Therefore, mass, velocity and momentum are 

not modeled in aCell. As what will be described in the 

next section about movement, every molecule and atom 

in aCell only moves to a location next to the original 

location in one time step of a simulation run. This further 

simplifies the simulation of movement in aCell. Similarly, 

the reason for cells in aCell to be stationary is also for the 

sake of simplicity in simulation. The mechanism of cell 

movement is complex, and it sometimes needs inter-cell 

co-ordination which is even more complex.  

Reaction distance directly affects the number of 

possible reactions which can occur. This is because the 

longer the distance, the larger the number of molecules 

which can participate in a reaction. The distance is 

currently arbitrarily set at 3. The distance from a DNA 

molecule to the membrane surrounding it is also set at 3. 

Setting both to the same value enables the membrane to 

act as a capsule to cause reactions involving the DNA 

molecule to be more likely to occur. This technique is 

also used in membrane computing to facilitate 

computation. 

In nature, the reaction distance may vary depending 

on the types of reactions and the types of cells. Thus, 

support for these complex features is omitted in aCell at 

this stage. They are considered as possible future 

extensions to aCell when the implications of different 

reaction distances, different cell sizes and different cell 

types are further studied. At the current stage, the size of 

each cell is uniform in aCell and only one type of cells is 

supported in a simulation run. 

The aCell model aims to strike a balance among three 

factors; closeness to reality, fast simulation speed and 

high flexibility to model the nature of a cell. By explicitly 

modeling each molecule in aCell instead of modeling 

collectively using differential equations, each molecule 

can be individually specified, and the actions of each 

molecule can be individually tracked. This provides aCell 

the high flexibility needed in future work to model each 

element of a cell using only molecules. To counter the 

slowness in explicit simulation, a highly realistic 

representation used in the synthon model is not used and 

the physical aspects are simplified. The current aCell 

model simulates molecules and cells at a higher abstract 

level than that of the synthon model. 

4. THE PROCESSES OF ACELL 

In this section, the eight major processes of the aCell 

model are described. They are 1) cell energy update, 2) 

cell membrane permeability adaptation, 3) cell death, 4) 

cell reproduction, 5) cell fitness evaluation, 6) input of 
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new molecules, 7) reactions among molecules and 8) the 

movement of a molecule. 

4.1. Overview of the Processes 

Before a simulation run of aCell, the characteristics of 

each type of molecules and the reactions have to be 

specified. In our implementation of an aCell simulator, 

they are specified in two text files, 

MoleculeWorld.txt and Reactions.txt. The 

color, the name, the state number and the membrane 

resistance values of each type of molecules are specified 

in MoleculeWorld.txt. The reactions are specified 

in Reactions.txt. Details about the format of the 

text files can be found in (Goh et al., 2019). 

Fig. 5 shows an overview of the aCell model 

components and how they interact. Except for the files 

MoleculeWorld.txt and Reactions.txt, all the 

files in Fig. 5 specify or log the states of a simulation at 

each time step. MoleculeInput.csv specifies the 

types of molecules and the number of molecules to inject 

into the simulation space at each time step. The rest of the 

files shown on the right side of the simulator are log files, 

which are the output of the simulator. 

Fig. 5: An overview of the model components and how 

they interact. 

A simulation run of aCell starts with either an empty 

simulation space or a simulation space with some initial 

cells. When cells are not involved in a simulation run, for 

example in a run to simulate reversible chemical 

reactions, the simulation run starts with an empty space. 

When cells are needed, for example for solving an 

optimization problem where the chromosomes consisting 

of genes of a DNA are needed to encode fitness 

parameters of the optimization problem, some initial cells 

are inserted at the beginning. The number of initial cells 

can be specified according to the needs of a simulation 

run. 

aCell supports direct insertion of new molecules at 

specified or random locations in a simulation space at 

each time step of a simulation run. However, new 

molecules are normally inserted from the top of the 

simulation space at random locations.  

When a molecule moves, it can move to randomly one 

of its neighboring locations or stays put at each time step. 

The probability to move downwards is designed to be 

greater so that a flow of molecules moving into and out 

of the simulation space can be simulated. This is because 

cells which are stationary in nature often rely on flow 

currents to bring nutrients to them. If the target location 

where a molecule is going to move to is already occupied, 

the molecule stays in place. 

All cells are stationary in aCell. If sufficient resources 

such as food are provided, the cells can reproduce. 

Normally a simulation run involving cells will let the 

simulation space be filled up with cells first before 

inserting molecules for an intended experiment. 

To simulate chemical reactions, every molecule is 

evaluated at each time step to see if it is involved in a 

reaction. The selection of molecules for evaluation is 

random. Furthermore, if a molecule can be involved in 

more than one reaction, one reaction is randomly decided. 

DNA molecules are treated in the same way as other 

molecules for chemical reactions. After a reaction, the 

reacting molecules are eliminated, and the resulting 

molecules are produced. If a molecule does not fulfill the 

conditions of any reactions, the molecule is moved as 

described above. 

The reproduction process, the aging process and the 

death of a cell are not simulated as chemical reactions in 

aCell yet because their reaction pathways are complex 

and have not been fully understood yet. Thus, they are 

simulated at high abstract levels and the use of 

programming constructs is necessary. 

For a cell to reproduce, the cell must reach a certain 

age and must have a certain minimum amount of energy. 

Age in aCell is calculated based on the number of 

metabolism reactions which has occurred in a cell from 

its introduction to the current point in time. Mutation 

occurs in the chromosomes of a new cell of the next 

generation during reproduction. The degree of mutation 

is dependent on the difference between the current fitness 

value of a parent cell and the optimum fitness value. The 

bigger the difference, the more aggressive the mutation. 

The evaluation of the fitness value of a cell is also 

implemented at a high abstract level using programming 

constructs instead of chemical reactions. This is because 
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it is not known yet how a number system exists in nature 

with molecules and how a comparison of two numbers 

can be made using chemical reactions. 

A cell will die when it ages beyond a certain age limit, 

has less than 0 amount of energy or has more energy than 

a certain overheat energy level. The age limit and the 

overheat level are parameters which can be specified. 

When a cell dies, the cell and its DNA molecule are 

removed from the simulation space. 

  aCell currently has a basic membrane 

permeability adaptation scheme. When the energy level 

in a cell is more than half the cell overheat level, the 

membrane of the cell will prevent food molecules from 

entering the cell, thus preventing metabolism reactions 

from occurring. This is meant to ensure that the cell does 

not kill itself by overheating. 

4.2. Details of the Processes 

The main procedure of aCell is shown in Fig. 6. The 

details of the processes will be explained according to the 

sequence in the main procedure to show how the 

processes come together in a simulation loop.  

 

 

Fig. 6: The main procedure of aCell. 

• Cell Energy Update, Cell Membrane Permeability 

Adaptation, Cell Death and Cell Reproduction 

In the main simulation loop, the first cell process 

updates the energy level of every cell by deducting a 

predefined amount of energy from each cell. Thereafter, 

the membrane permeability of every cell towards Food-

1 molecules is updated. Food-1 molecules are 

molecules which can release energy when they react with 

the DNA molecule of a cell in a metabolic reaction. If the 

energy of a cell is greater than or equal to half of 

CELL_OVERHEAT_LEVEL, its membrane resistance to 

Food-1 entering is set to 100. Otherwise, the resistance 

is set to 0. 

There are various theories on how aging occurs in 

nature. In aCell, a metabolism counter is used to 

determine age. Whenever a metabolic reaction occurs in 

a cell, the metabolism counter and thus the age of the cell 

is incremented by one. When a cell dies, the cell and its 

DNA molecule are removed from the simulation space. 

However, other molecules contained within the cell 

membrane remain. The conditions for cell death are 

shown in Fig. 7. 

 

 

Fig. 7: The conditions of cell death. 

 

Fig. 8: The pseudo-code of cell reproduction. 

The pseudo-code of cell reproduction is shown in Fig. 

8. When a cell is above a predefined maturity age and 

contains energy above a predefined threshold value, it 

duplicates itself to produce a new cell nearby if there is 

an empty spot next to the cell for the new cell to come 

into existence. The DNA of a cell is a stationary molecule 

which can react with other molecules, and it also contains 

an array of genes. A gene is currently represented by a 
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floating-point number. It can easily be changed to any 

suitable data type depending on the purpose of a cell 

simulation. The reproduction process transfers energy 

from a parent cell to a new cell. The amount of energy 

transferred is equivalent to the amount set in 

INITIAL_REPRODUCED_CELL_ENERGY. 

In order to determine the value of each gene in the new 

cell, the difference between the fitness value of the parent 

cell and the parameter OPTIMUM_FITNESS is 

calculated, and the difference is used to determine the 

level of mutation to introduce to each gene of the new cell. 

The bigger the difference, the bigger the mutation step. 

For each gene in the new cell, the gene value is set to the 

gene value of the parent cell plus a random value between 

the negative value of the mutation step and the positive 

value of the mutation step. 

• Cell Fitness Evaluation 

The value of each gene of a cell is a fitness parameter. 

The fitness of a cell is calculated by fitting the value of 

each gene into a fitness function specified for a 

simulation run. From the results of fitness evaluation of 

every cell, the cell with the best fitness is determined and 

logged at each time step. The fitness value and the fitness 

parameters of each cell are also logged. 

• Input of New Molecules 

New molecules are generated according to a 

specification file. In our implementation, it is named 

MoleculeInput.csv. The file specifies the number 

of new molecules, the types of molecules to be inserted 

and the locations of insertion for each time step of a 

simulation run. The location of insertion is normally set 

to random locations at the top of the simulation space. 

Details about the format of MoleculeInput.csv and 

how the input can be specified can be found in [33]. 

The new molecules are regarded as having moved at 

the time step when they are introduced and therefore are 

stored in a list called afterList. afterList is a 

linked list used internally by the simulator of aCell. It is 

introduced here to provide context to the description of 

processes related to molecules. A molecule which has 

moved or reacted with other molecules is put into 

afterList while a molecule who has not, remains in 

another linked list called beforeList. 

• Reactions Among Molecules 

Every molecule in beforeList is processed at 

every time step. Molecules in beforeList are shuffled 

randomly first before selection for processing begins to 

ensure that the order of molecule selection from 

beforeList is random. 

A molecule can only either participate in a reaction 

once or move once per time step. While there are still 

molecules in beforeList, a molecule is selected and 

removed from beforeList and processed as described 

below. We shall designate the selected molecule as m for 

the purpose of the description. 

After m is selected from beforeList, it is checked 

to see whether it can react with other molecules. Every 

molecule within close proximity from m is considered and 

every possible reaction is considered. Only one out of the 

possible reactions is selected randomly to occur. All the 

reacting molecules of that reaction are removed from 

beforeList and the new molecules which are the 

results of the reaction are inserted into afterList. A 

molecule cannot react with another molecule through a 

cell membrane. If the search fails to find a possible 

reaction or if there are insufficient number of empty 

locations within close proximity from the location of m 

for the resulting molecules to be placed, then no reaction 

will occur. 

If the matching reaction is a metabolism reaction, 

which can only occur in a cell, 50% of the energy released 

from the reaction is added to global energy and the other 

50% is added to the cell where m is in. Thereafter, the age 

which is the metabolism count of the cell is incremented 

by one. 

• The Movement of a Molecule 

If a reaction involving m does not occur, m will move. 

To process movement, whether m is within a cell 

membrane or outside needs to be determined first. If it is 

within a cell membrane, the destination of its movement 

is determined without a downward flow. If it is not, it will 

be determined with a downward flow. If a cell in the 

natural world is stationary, it often positions itself or lives 

in a spot where there is a stream of molecules flowing 

through it in order for it to capture nutrients. aCell 

simulates this behavior by simulating a tendency of a 

molecule to move downward. 

When a molecule in a location (𝑥, 𝑦, 𝑧) moves, it can 

move randomly up to a location (𝑥1, 𝑦1, 𝑧 + 1), sideways 

to a location (𝑥1, 𝑦1 , 𝑧)  or downward to a location 

(𝑥1, 𝑦1, 𝑧 − 1) where 𝑥1 ∈ {𝑥 − 1, 𝑥, 𝑥 + 1}  and 𝑦1 ∈

{𝑦 − 1, 𝑦, 𝑦 + 1}. Including the current location of the 

molecule, there are 27 possible neighboring locations for 

the molecule to move to. 
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To simulate a downward flow, the nine possible 

locations on top of the molecule m are designated by nine 

numbers, 1 to 9. The nine possible locations at the same 

level are designated by 10 to 18 and each of the nine 

possible locations below are designated by two numbers 

from 20 to 36. By generating a random integer between 1 

to 36 to determine the destination location, the probability 

of m moving to a location downward is 2/ 36 and the 

probability of it moving to a location sideways or upward 

is 1/ 36. 

When a downward flow is not needed, the 27 possible 

destination locations are designated by 27 numbers from 

1 to 27. A random number between 1 to 27 is generated 

to determine the destination location. After determining 

the destination location, the movement mode of m is 

considered. There are four modes of movement. They are 

1) movement from space to space, 2) movement from 

space to cell, 3) movement from cell to space and 4) 

movement from one cell to another cell. 

The first mode of movement does not need to consider 

the membrane resistance against m. The other three 

modes have to consider the membrane resistance. Each 

molecule has two membrane resistance values, one 

against it when it attempts to enter a cell and another 

against it when it attempts to exit a cell. The resistance 

values are specified for each molecule type in the 

MoleculeWorld.txt specification file in our 

implementation. To overcome the resistance, a random 

number between 1 to 100 is generated and that number 

must be greater than the resistance value.  

If m moves from space to cell, it will need to overcome 

the membrane resistance which prevents it from entering 

a cell. If m moves from cell to space, it will need to 

overcome the membrane resistance which prevents it 

from exiting a cell. If m moves from one cell to another 

cell, it will need to overcome both the membrane 

resistance which prevents it from exiting the first cell and 

the membrane resistance which prevents it from entering 

the second cell. 

If m fails to overcome a resistance value, it will remain 

in place. If the destination location is already occupied by 

another molecule, m will also remain in place. The six 

sides of the simulation space can each have a wall or 

nothing. If m moves beyond a side without a wall, m will 

be removed from the simulation. If there is a wall, m will 

stop moving and remains in place. 

At the end, if m can successfully move, it will be 

considered as acted and will be placed in afterList. 

 

• Other Supporting Processes by the Simulator 

After processing every molecule in beforeList, a 

display text file of the current time step is generated to 

enable the visualization of molecules and cells in the 

simulation space. The text file contains commands of 

Mathematica to display the molecules and the cells in 3-

D as shown in Fig. 3. The 3-D visualization facility of 

Mathematica allows panning, rotating and zooming 

operations. 

At the end of a time step, the total count of each type 

of molecules in the simulation space and the total count 

of each type of molecules that have exited the simulation 

space are logged. The final amount of global energy at 

that time step is also logged. Before moving to the next 

time step, all molecules in afterList are moved back 

to beforeList and the time step counter is 

incremented by one. 

5. EXPERIMENTS AND THE RESULTS 

To test the capabilities of aCell, seven experiments 

were conducted using aCell to simulate biochemical 

reactions (1 and 2), perform fundamental computing 

operations (3 to 5) and solve optimization problems (6 

and 7). They were 

1. Formation of larger structures from small 

molecules 

2. Reversible chemical reactions 

3. Simulation of an AND gate 

4. Simulation of a NOT gate 

5. Simulation of a 1-bit memory element   

6. Searching for the global minimum of the 

Restriping function when n = 2. The global 

minimum is 𝑓(0,0) = 0, the search domain was 

−5.12 ≤ 𝑥𝑖 ≤ 5.12 and 𝐴 =  10. 

7. Searching for the global minimum of the 

Rosenbrock function when n = 2. The global 

minimum is 𝑓(1,1) = 0 and the search domain 

was −5 ≤ 𝑥𝑖 ≤ 5. 

By using the same framework throughout the 

experiments, the experiments attempted to demonstrate 

that aCell is a model suitable to serve as the groundwork 

for the study of the relationship between biochemical 

reactions in cells and computation using cells in the future. 

There are four key aspects of chemistry essential to 

cellular processes [4]. They are 1) covalent and 

noncovalent interactions among molecules, 2) small 
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molecules serving as building blocks for larger structures, 

3) reversible chemical reactions and 4) reactions which 

can store and release energy. The first aspect is already 

supported by the nature of the rewriting rules used by 

aCell. The fourth aspect is also supported by allowing 

each reaction in aCell to be specified as either 

endothermic or exothermic. Thus, the second aspect and 

the third aspect were examined with experiments 1 and 2 

respectively.  

The basic building blocks of a computing system are 

the AND gate, the OR gate and the NOT gate. 

Experiments 3 and 4 were meant to verify that aCell can 

simulate them. As a simulation of an AND gate is similar 

to the simulation of an OR gate, that experiment and its 

result is not described in this paper. Experiment 5 to show 

that aCell can simulate a 1-bit memory element was 

meant to demonstrate that a complex digital circuit can 

be simulated using aCell reactions without following the 

usual way of connecting logic gates together. 

Experiments 6 and 7 were experiments to use aCell to 

solve two typical benchmark fitness functions normally 

used in evolutionary computing. 

5.1. Common Setup for the Experiments 

A typical simulation run of aCell consists of four steps. 

1) Specification of the details of the simulation 

space, molecules, cells, reactions, the input of 

new molecules into the simulation space and the 

number of time steps to run.    

2) Running the simulation where reactions occur, 

and cells reproduce and die.  

3) Termination of the simulation when the 

specified number of time steps to run is reached. 

4) The log files are studied to obtain the results of 

the run. 

In the first step, there are two types of specifications. 

One is the specification in text files, namely, 

MoleculeWorld.txt, Reactions.txt and 

MoleculeInput.csv. Another is the setting up of 

parameter values in the aCell simulator. 

Reactions.txt of each experiment is shown 

together with the result in each figure from Fig. 9 to Fig. 

14. MoleculeWorld.txt and 

MoleculeInput.csv files are not shown in this 

paper due to the limitation of space. Reading the files are 

not needed to examine the results because the charts show 

the input molecules and the output molecules of the 

experiments. Nevertheless, the files are available for 

download for the details at 

https://github.com/clgoh3221/Specific

ations. 

aCell parameters were set to values as shown in Table 

3. They were set to reasonable arbitrary values to provide 

a fixed baseline environment. The input of molecules 

specified in MoleculeInput.csv was then calibrated 

to suit the baseline and the requirements of the 

experiments. 

Table 3: Values of aCell parameters. 

Parameter Value 

LENGTH_OF_X_DIMENSION 40 

LENGTH_OF_Y_DIMENSION 40 

LENGTH_OF_Z_DIMENSION 40 

NUMBER_OF_INITIAL_CELLS 4 

SPACE_BETWEEN_TWO_NUCLEI 10 

INITIAL_CELL_ENERGY 100.0 

ENERGY_USED_BY_A_CELL_PER_TIME_ST

EP 

1.0 

MINIMUM_ENERGY_FOR_REPRODUCTION 150.0 

INITIAL_REPRODUCED_CELL_ENERGY 100.0 

CELL_OVERHEAT_LEVEL 500.0 

AGE_LIMIT 10 

MATURITY_AGE 1 

GLOBAL_ENERGY 64100 

NUMBER_OF_GENES_IN_A_CELL 2 

 

For the experiments, the reaction distance was set to 

3-unit length and a simulation space of 40-unit length x 

40-unit length x 40-unit length was used. The space could 

contain 4 x 4 x 4 artificial cells. The energy released by a 

metabolic reaction in a cell was fixed at an arbitrary 150 

units. 

5.2. Formation of Larger Structures from Small 

Molecules 

In experiment 1 (Fig. 9), the goal is to form AAAAA-

1 molecules from A-1 molecules. The figure shows the 

average number of molecules by type detected in the 

simulation space of ten simulation runs with ten different 

random seeds.  

Reactions 1 and 2 were reactions of cell metabolism. 

Reaction 1 represented a reaction which occurred when a 

food molecule was detected. It produced a P-1 molecule 

which could react with a food molecule to release energy 

as in reaction 2. Reaction 2 was specified as a metabolic 
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reaction and made known to the aCell simulator.  Every 

time reaction 2 occurred in a cell, the age counter of the 

cell was incremented by one. The presence of a DNA-1 

molecule in a reaction was to ensure that the reaction only 

occurred inside a cell. Reaction 3 was used to get rid of 

excess of P-1 molecules in a cell.  

 

Fig. 9: Formation of larger structures. 

Reactions 4 to 7 were the reactions which formed 

larger molecules in a cell. A-1 represented the smallest 

molecule type and subsequently larger molecules type 

were represented by AA-1, AAA-1, AAAA-1 and 

AAAAA-1. The permeability of the cell membrane of 

each cell was set to trap molecules of type A-1 to type 

AAAA-1 within to facilitate the formation of molecule 

type AAAAA-1. This trapping of molecules enabled an 

efficient process to form larger molecules, similar to how 

cell membranes are used in nature. 

The experiment started at time step 0 with four initial 

cells. Food molecules were inserted throughout the 

experiment to enable the cells to reproduce and to sustain 

themselves. From time step 401 to time step 700 A-1, 

molecules were injected. AAAAA-1 molecules started to 

form inside the simulation space at time step 450 showing 

the formation of larger structures from small molecules. 

5.3. Reversible Chemical Reactions 

In experiment 2 (Fig. 10), molecule types A-1 to D-

1 were used to represent the general form of a simple 

reversible reaction. Artificial cells were not used in this 

experiment because reversible reactions can occur 

without cells. 

 

 

Fig. 10: Simulation of a reversible chemical reaction. 

Throughout the experiment, molecules of type A-1 

and B-1 were injected at each time step. Fig. 10 shows 

the average number of molecules by type detected in the 

simulation space of ten simulation runs with ten different 

random seeds. The result shows that the reactants and the 

products could reach an equilibrium and a reversible 

reaction can be simulated in aCell. 

5.4. Simulation of an AND Gate 

The result of experiment 3 is shown in Fig.11. 

Reactions 1 to 3 performed the same functions as 

reactions 1 to 3 in experiment 1. Reactions 4 to 7 defined 

the AND operation. InATrue-1 and InAFalse-1 

molecules were used to represent the two possible states 

of one input line labelled A and InBTrue-1 and 

InBFalse-1 molecules were used to represent the two 

possible states of another input line labelled B. 

OutTrue-1 and OutFalse-1 molecules were used 

to represent the two possible states of the output of the 

AND gate. 

 

 

Fig. 11: Simulation of an AND gate. 
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Four initial cells were set up in the experiment at time 

step 0 and Food-1 molecules were injected at every time 

step of the experiment. After giving the initial cells 

sufficient amount of time to reproduce, from time step 

300 to time step 349, InATrue-1 and InBTrue-1 

molecules were injected. From time step 1050 to time 

step 1099, InAFalse-1 and InBTrue-1 molecules were 

injected, changing the input to the simulated AND gate. 

The time gap between the two molecule injections was 

needed for the molecules from the first injection to exit 

from the simulation space completely before the second 

injection began. The duration of the gap was determined 

by adjusting the gap iteratively based on simulation 

results. 

The number of InATrue-1, InAFalse-1 and 

InBTrue-1 molecules shown was the number of 

molecules which existed in the simulation space at each 

time step. However, the number of OutTrue-1 and 

OutFalse-1+molecules shown was the number of 

molecules exiting the simulation space at the bottom of 

the simulation space. The exiting molecules were counted 

this way because an AND gate is only useful when an 

output is detected outside the gate.  

In the experiment, the number of OutTrue-1 

molecules and OutFalse-1 molecules which exited 

the AND gate was small in the range of 1 to 3. To indicate 

clearer the number of OutTrue-1 molecules and 

OutFalse-1 molecules in Fig. 11, the number had 

been multiplied by 10. In other words, every ten 

OutTrue-1 or OutFalse-1 molecules shown in Fig. 

11 was just one molecule. 

There were not any injections of InBFalse-1 

molecules because showing that reactions 4 and 5 worked 

and showing that reactions 6 and 7 worked is redundant. 

The result shows that aCell is able to simulate an AND 

gate. 

A slight variation to reactions 4 to 7 of this experiment 

can be used to show that aCell can simulate an OR gate. 

Therefore, that experiment and its result is not described 

in this paper. 

5.5. Simulation of a NOT Gate 

Fig. 12 shows the result of experiment 4. It shows that 

aCell is able to simulate a NOT gate. The setup of this 

experiment was similar to that of experiment 3. 

 

 

Fig. 12: Simulation of a NOT gate. 

5.6. Simulation of a 1-bit Memory Element 

Although in theory, a memory element can be 

constructed by devising a way to link together the 

simulated logic gates above, this experiment aimed 

to show that there is another way to do so by 

mapping the necessary operations related to 

memory to reactions that can be processed by aCell. 

The role of each molecule type in the reactions is 

described in Table 4. The result of experiment 5 is 

shown in Fig. 13. 

 

Table 4: Molecule types for the experiment to simulate a 

1-bit memory element 

Type Description 

InitMemory-1 For the creation of StoreInit-1 in a 

cell 

StoreInit-1 A storage element to store a state 

in a cell 

WriteFalse-1 For writing a false state into 

StoreInit-1 

WriteTrue-1 For writing a true state into 

StoreInit-1 

StoreFalse-1 A true state stored in a cell 

StoreTrue-1 A false state stored in a cell 

Read-1 For reading a state from a cell 

MemoryOutFalse-1 Output indicating a true state is 

stored a cell 

MemoryOutTrue-1 Output indicating a false state is 

stored a cell 

Destroy-1 For destroying the memory 

element in a cell 
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Fig. 13: Simulation of a 1-bit memory element. 

Reactions 1 to 3 were similar to the reactions used 

before for cell metabolism. Reaction 4 initialized a cell so 

that it contained a molecule which could store a state. The 

InitMemory-1 molecule served as a control molecule 

which could be used to replenish a cell with a 

StoreInit-1 molecule. Stopping the injection of 

InitMemory-1 molecules would stop cells from 

storing memory states. Reaction 5 ensured that each cell 

would only store one state. Reactions 6 and 7 were used 

to write a memory state into a cell. Reactions 8 to 13 were 

used to support over-writing of a memory state. Reactions 

14 and 15 were used to read a memory state from a cell 

and reactions 16 and 17 were used to destroy a memory 

molecule in a cell. 

From the result, it can be seen that from time step 400 

to time step 650, StoreInit-1 molecules were 

generated after the injection of InitMemory-1 

molecules. Then StoreInit-1 molecules were 

converted to StoreFalse-1 molecules correctly by a 

write operation. 

Thereafter, a read operation was started at time step 

700, and it worked correctly because 

MemoryOutFalse-1 molecules were detected at the 

exit of the simulation space from time step 850 to time 

step 1000. 

A write operation was initiated at time step 900 to 

change the memory state to true. When it was followed 

by a read operation at time step 1100, one 

MemoryOutTrue-1 molecule was detected at the exit 

between time step 1200 and time step 1250. 

For the same reasons explained before, as the number 

of MemoryOutTrue-1 molecules and 

MemoryOutFalse-1 molecules was small, it was 

multiplied by ten to enable visualization in the chart. 

5.7. Searching of the Global Maximum and the Global 

Minimum of Fitness Objective Functions 

The results of experiments 6 and 7 are shown in Fig. 

14 and Table 5. For each experiment, the aCell simulation 

was run ten times with ten different random seeds. 

GALGO 

(https://github.com/aasivas/GALGO) was 

used as a baseline for comparisons with aCell to show 

how aCell performed relatively. It was compiled and run 

with its default parameters and compilation options 

described in its README file. 

 

 

Fig. 14: Finding the global minimum of the Rastrigin 

function and the Rosenbrock function. 

Table 5: Average final fitness values of aCell and 

GALGO (better results are in bold). 

Function Method Average 

Fitness 

Standard 

Deviation 

Rastrigin (n = 

2) 

aCell 3.07985 1.94053 

 GALGO 2.29416 1.43225 

Rosenbrock (n 

= 2) 

aCell 0.50082 0.70268 

 GALGO 0.34752 0.45222 

 

Only three reactions were needed for the experiments 

for maintaining cells. Apart from the food molecules 

which were needed by the cells, no other molecules were 

injected throughout the experiments. The cells only used 

mutation to search for the optimum fitness parameters. 

To guide the mutation process, parameters in Table 6 

were used. These parameters were determined after a 

series of values had been evaluated. The results show that 

in the most basic form using only mutation without using 

any selection methods and cross-over operations, aCell 
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can solve simple optimization problems comparable to 

GALGO.  

 

Table 6: Mutation ranges used according to fitness 

differences. 

Parameter  Exper

iment 

 

 1 2 3 

OPTIMUM_FITNESS 50.

00 

0.00 0.0

0 

MINIMUM_FITNESS

_PARAMETER 

-

100.00 

-5.12 -

5.00 

MAXIMUM_FITNESS

_PARAMETER 

10

0.00 

5.12 5.0

0 

FITNESS_DIFF_EX

CELLENT 

5.0

0 

0.33 50.

00 

FITNESS_DIFF_NO

RMAL 

10.

00 

1.00 10

0.00 

MUTATION_STEP_E

XCELLENT 

5.0

0 

0.33 0.0

5 

MUTATION_STEP_N

ORMAL 

10.

00 

1.00 0.2

0 

MUTATION_STEP_B

AD 

20.

00 

3.00 2.0

0 

 

DISCUSSION 

It is hoped aCell can be used by researchers to learn 

computing methods from AChem and cells. It is built for 

future modifications and simplicity using a high-level 

abstraction. Many of its features are parameterized for 

flexibility and easy modification. 

We have conducted fundamental tests to evaluate its 

abilities to simulate and compute. aCell can readily 

support many more reaction rules and many more cells in 

larger simulation space. However, the areas of cell 

chemistry to explore this is still yet to be determined 

because guidance from the angle of cell biology is needed.  

At its current form, aCell can simulate at a high 

abstract level chemical reactions and basic cell processes. 

In addition, it can also simulate the fundamental building 

blocks of computation and can be used to solve simple 

optimization problems. All of these can be accomplished 

using the same method of defining molecules, reactions, 

cells and molecule input in the structure provided by the 

aCell model. 

From the perspective of AChem and cell simulation, 

aCell can model simple to complex molecules of different 

configurations. It can model unlimited number of 

biochemical reactions, subjected only to the limitations 

of the underlying data structures used to implement the 

simulator. By chaining biochemical reactions together, 

complex biochemical reaction pathways can be simulated.  

5.8. Future Work 

In the area of AChem, the reactions and the molecules 

involved in cell processes in nature should be studied 

further so that they can translated to the formats usable in 

aCell.  This will reduce the use of programming 

constructs and narrow the gap between biochemical 

processes in nature and the processes of computation. For 

example, current cell processes in aCell such as 

reproduction, mutation and the sensing of the fitness of a 

cell can be studied further to discover ways to specify 

them with only molecules and reactions in aCell. In 

addition, new cell processes such as genetic crossover, 

cell movement and inter cell communication can be 

introduced so that aCell can simulate biological cells 

better and use the new processes to mimic computation 

that occurs in nature. Ideally, every cell process in aCell 

should be specified with only reactions and molecules.  

In the area of computation, although aCell can 

simulate the fundamental building blocks of computation, 

it still needs to be extended to connect the building blocks 

together. For example, gate connectors made up of 

artificial cells are needed. Circuit efficiency still needs to 

be measured and improved if aCell is extended and scaled 

up to simulate complex network of logic gates to compute.  

Looking at both AChem and computation, there are 

two possible areas for exploration. Firstly, a quantifying 

system based on reaction rules in nature for quantifying 

the number of molecules in an area. Secondly, a 

comparison system based on reaction rules in nature for 

comparing two quantities. These two areas will lead to 

the understanding of the number system working in 

nature, which is directly related to computation. 

6. CONCLUSION 

This study proposes aCell, a flexible artificial cell 

model that uses artificial chemistry to explore 

information processing in natural cells and bio-inspired 

computation. The model demonstrates capabilities in 

forming large molecules, modeling reversible reactions, 

implementing logic operations, storing state, and solving 

optimization problems. aCell provides a unified platform 

for simulating both essential cell biology and 

computation using the same artificial chemistry 

constructs. The model can be extended in future work by 

incorporating more realistic biochemistry and scaling up 

the complexity. The study contributes an accessible 
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modeling framework for investigating synergies between 

biology and computation. 
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