
1

 aCell: A Cell Model Using Artificial

Chemistry for Exploring Computation in

Nature

Chien-Le Goh 1, Yong Kheng Goh 2 and Hong Tat Ewe 3

Cyberjaya, Malaysia, Multimedia University, Faculty of Computing and Informatics 1
, Chian Faculty of Engineering and ScienceLee Kong , 32

Universiti Tunku Abdul Rahman (Sungai Long Campus), Selangor, Malaysia
clgoh@mmu.edu.my (Corresponding Author); gohyk@utar.edu.my; eweht@utar.edu.my

Abstract—This study proposes aCell, a new artificial

cell model for exploring computation in nature using

artificial chemistry. The model represents molecules as

spheres and simulates chemical reactions through

collision-based rewriting rules. Cell components like

membranes are modeled abstractly. Experiments

demonstrate aCell's capabilities in forming larger

molecules from basic building blocks, modeling

reversible reactions, implementing logic gates, storing

state, and solving optimization problems. The unified

framework supports simulating both essential biology

and computation using the same artificial chemistry

constructs. aCell provides a flexible platform for

investigating information processing in natural cells

and bio-inspired computing.

Keywords: Simulation System, Artificial Cell,

Computation, Artificial Chemistry, Artificial

Life

1. INTRODUCTION

Natural computing has three main branches. They are

computing inspired by nature, synthesis of natural

phenomena in computers and computing with natural

materials [1]. Artificial life (“AL” or “Alife”) is an area

of studies under the second branch of natural computing.

Its main goal is to study life by creating virtual entities

which have life-like behaviors. According to one of the

pioneers of Alife, C. Langton, artificial life is the study of

synthetic systems that exhibit behavioral characteristics

of natural living systems. It complements the traditional

biological sciences concerned with the analysis of living

organisms by attempting to synthesize life-like behaviors

within computers and other artificial media [2]. It also

complements the field of artificial intelligence by

identifying the source of intelligent rational behaviors

from the bottom up instead of top down.

Research on artificial life can be conducted at

various levels, from cell, tissue, organ, organ system,

organism, population and community to ecosystem.

Much research work has been done to simulate

processes and life-like behaviors of entities such as

cells, neurons, genes, immune systems, membranes,

plants, bacteria and swarms of animals like ants,

termites, bees, spiders, fish and birds [3]. Among the

entities, simulation of cells is especially important

because cells are the basic building blocks of life.

Cells can grow, reproduce, process information and

respond to stimuli. An exceptionally large variety of

cells exist in varied sizes and shapes. Some move

and have changing structures while some are

stationary and have stable structures. Organisms on

earth exist as a single cell or contain up to trillions

of cells [4].

Nowadays, with the knowledge gained from

molecular cell biology, it is difficult to deny that powerful

information processing capabilities exist in a cell. A cell

presents a rich area of exploration for synergies between

biology and computation. Research into the information

processing capabilities of a cell can provide a better

insight into both biology and computation. It has the

potential to reveal the similarities and differences

between computation designed by humans and

computation that occurs in nature. If a good working

model of a cell can be created, even if only partially

realistic and highly abstracted, the general behaviors of

cells can be studied from the perspective of computer

science. Algorithms in nature can be learned through the

model. With the ever-increasing adoption of artificial

intelligence in information systems, discovery of new

artificial intelligence algorithms can enhance the

mailto:@utar.edu.my
mailto:eweht@utar.edu.my

2

capabilities of information systems. Alife as a form of

bio-inspired computing is a major area of investigation.

For simulating cells in the context of Alife,

artificial chemistry (“AChem”) is one of the

approaches used. It is an approach used to model

biochemical molecules and simulate the chemical

reactions of these molecules at a high abstract level.

It attempts to capture fundamental properties of

biochemistry without modeling specific actual

chemical processes [5]. Chemical molecules are

commonly represented with alphabets like A, B,

C, ... in AChem for abstraction. Artificial cells are

cells simulated with AChem and programming

codes.

In this paper, a new artificial cell model based on

AChem is proposed. We shall call the model aCell

for ease of reference in this paper. The research

objective of aCell is to propose an artificial cell

model for exploring computation in nature, using

artificial chemical reactions with minimal usage of

programming codes. aCell aims to be grounded to

cell biochemistry to enable relatively easy direct

mapping of real-life cell biochemical reactions to

aCell reactions. Furthermore, reactions and

molecules are to be used as much as possible to

simulate the behavior of cells and to sense the status

of cells.

aCell is built on top of the foundation laid by the

organic builder [6] and membrane computing [7], [8].

Membrane computing and the organic builder both

employ AChem. They both simulate molecules and

chemical reactions using rewriting rules.

The membrane computing model is a model capable

of computation by mimicking membranes and cell

behavior. However, it operates in an abstract manner

forgoing the simulation of physical properties of

molecules such as the locations of molecules, the

movement of molecules and the triggering of reactions

based on collisions. Reactions can occur when the

necessary molecules exist within a membrane regardless

of the locations of the molecules (Fig. 2).

On the other hand, the organic builder is a model not

proposed for computation. It is proposed to simulate

molecules and reactions in a simulation space which has

molecules moving about freely (Fig. 1). The molecules

can react when they collide based on a list of defined

reactions. It simulates the physical properties of

molecules such as their locations, their movement and

molecular bonds. It has been shown to be able to simulate

cell membranes, cell reproduction and gene mutation.

aCell combines the major features of the membrane

computing model and the organic builder so that these

two models can complement each other. aCell uses its

own methods to simulate endothermic and exothermic

reactions, an explicit flow of molecules into and out of

the simulation space, cell membranes, cell DNA, changes

to membrane permeability based on the energy levels of

cells, aging of cells, cell reproduction and cell mutation

based on cell fitness levels. Furthermore, the simulation

space of aCell is a 3D space instead of a 2D plane.

The next section describes existing research work

related to aCell. It is followed by descriptions of the

building blocks of aCell in section 3 and the processes of

aCell in section 4. Section 5 presents the experiments

conducted to verify the capabilities of aCell. Section 6

discusses the significance of aCell, and section 7 presents

the conclusion of this paper.

2. LITERATURE REVIEW

There are broadly three areas of research work related

to aCell. They are simulation of chemistry, simulation of

cells and computation using artificial cells or artificial

chemistry. They are described briefly in the following

subsections. Thereafter, the features adopted by aCell are

described.

2.1. Simulation of Chemistry

In this subsection, five notable approaches to

simulating biochemistry are described. These approaches

are used to investigate natural chemical reactions.

The Organic Builder [6], [9] is an artificial chemistry

system where the atoms are represented as circles moving

around randomly in a two-dimensional area. The atoms

can react among themselves according to preset reactions

rules when they collide with each other. They can also

form bonds among themselves to form molecules. Fig. 1

illustrates how a simulation space in the Organic Builder

can look like. This example contains molecules a2, b0, c0

and d1. The line between two molecules is the molecular

bond between them. Molecules forming a loop by

molecular bonds are considered a cell. In the example,

molecule d1 is the DNA molecule in a cell. Reactions i)

b0 + b0 => b0b0 where two molecules bond together, and

ii) b0b0 + c0 => a2c0 where two bonded molecules are

3

transformed to two other bonded molecules are examples

of reactions supported.

The Organic Builder has been used to discover the

reaction rules needed for the processes involved in cell

reproduction. DigiHive [10] has further enhanced this

line of work by adding more features closer to the real

world.

Fig. 1: An example of the Organic Builder.

An attempt to bring chemically realistic model to

AChem is the synthon approach [11]. The purpose is to

use a model of atoms and molecules to study the physical

properties of complex chemical reactions. A synthon is

defined as 𝑆(𝐴) = 〈𝑊, 𝐴, 𝑅, 𝐸〉 where 𝑊 is the set of

vertices representing virtual atoms, 𝐴 is the set of vertices

representing atoms, 𝑅 is the vertices representing the

electrons explicitly modeled and 𝐸 is the set of edges

associating vertices from sets 𝑊 to 𝐴 and from sets 𝐴 to

𝑊. The virtual atoms are used to represent the part of a

molecule that is not relevant to the reactions under

investigation. A reaction is defined as 𝑆(𝐴)
𝑇
⇒ 𝑆′(𝐴). A

tool based on the synthon model has been used

successfully to visualize polymerization and de-

polymerization reactions.

BioDrive [12] is an artificial chemistry model which

models the reactions of molecules using differential

equations. Concentration of each type of molecules in the

system is used to determine the reaction rate. Reactions

are expressed using differential equations and the effects

of a reaction on other reactions are modeled

mathematically. The precise locations of molecules are

not taken into consideration in this model. Changes in

concentrations of molecules against time can be

calculated by solving the differential equations.

Another approach to simulate chemistry is an

approach which uses squares and tiles [13]. Squares are

used to represent the basic elements to configure tiles of

different shapes and sizes. The squares and tiles are

placed in a well-mixed 'soup' in which they are randomly

chosen to collide. The result of a collision is a change to

the size and shape of the tiles. This change represents a

chemical reaction. This model has been applied to the

investigation of the growth and the decomposition of

complex molecules in chemistry.

[14] proposed an AChem model based on strings of

characters. In the model, a text character is used to

represent an atom and a string of characters is used to

represent a molecule. A set of recombination rules

function as reactions to transform the connected strings

from one configuration to another. This model has been

applied to model complex biochemical reactions such as

oxidation of fatty acids and DNA related biochemical

reactions such as replication, transcription and translation.

With the introduction of membrane molecules, this model

has been extended to include membrane structures and to

enable movement of molecules across membranes [15].

Simulation of Cells

Simulation of natural cells at low level is extremely

complex research. It is also hampered by the incomplete

knowledge we currently have about a cell. Therefore,

related research work in this section normally focuses on

certain selected cell processes only. The exception is E-

CELL which attempts to mathematically simulate a

single cell or a group of cells.

E-CELL [16]–[18] is a multi-algorithm, multi-

timescale cell simulator. It focuses on simulating

biochemical interactions and components within a single

cell mathematically without using virtual matters like

atoms or molecules. It is efficient for large scale

simulations of different timescales. E-CELL has been

used to investigate the global behaviors of the liver.

A model that can generate complete organisms

possessing metabolism and morphology from a single

initial cell was proposed by [19]. It was later extended to

use L-systems [20]. It is a hybrid model combining

AChem and L-systems. The model simulates a cell

growing into an organism of cells in a 2-D grid which

contains chemical molecules. Chemical reactions in this

model consume or produce energy besides producing

new chemical molecules. The action list of the simulated

cells contains actions to absorb or release chemical

molecules, consume energy, transform a molecule to

another via a reaction rule, perish and reproduce new

4

cells. To grow an organism in an environment, a genetic

algorithm is used. The genetic algorithm is applied to

evolve two different chromosomes in the organism, one

specifying the rules of growth and another specifying

cellular actions. Balanced creatures and actions that can

develop a suitable metabolism system in an environment

are favored in the evolution of the two chromosomes.

With this model, artificial creatures that can survive in an

environment have been created successfully and they

have self-healing abilities.

Although it is not based on AChem but a physical rule

of motion, PPS (Primordial Particle System) [21], [22] is

able to produce emergent behavior of particles forming

cells when a certain combination of parameter values is

used. The cells can reproduce, restructure themselves

and form a life-like system. aCell does not use the

discovery made with PPS because linking it to AChem is

currently beyond the scope of aCell. However, it is worth

noting as an example that AChem may not be the simplest

way to simulate a cell.

2.2. Computation Using Artificial Cells or Artificial

Chemistry

There are three main research areas using cells and

chemistry as inspiration to find new computational

approaches. They are membrane computing, cellular

automata and evolutionary computation. For

computational efficiency, abstraction is normally used to

avoid computing the sophisticated internal processes

involved.

Membrane computing is an area of computer science

that aims to abstract computing ideas and models from

the structure and the functioning of living cells. A system

based on membrane computing has multi-sets of objects

encapsulated in membranes. The objects and the

membranes evolve according to some rules and the

membranes function as compartments to ensure that

specific objects only evolve according to certain rules

locally within certain membranes. Fig. 2 shows an

example of a simple membrane computing system. There

are four membranes labeled 1 to 4. Objects ab are

encapsulated in membrane 4 and there are two local rules

in the membrane. Rule b->bc can transform ab to abc.

Thereafter, b->bc or c->aδ can transform abc. If

more than one rule is applicable, then one rule is selected

randomly. If b->bc is selected, abc will be transformed

to abcc. If c->aδ is selected, abc will be transformed

to aba and membrane 4 will be dissolved. aba is then

considered to be in membrane 3. If membrane 4 is

dissolved, the rules in membrane 4 will no longer be used

and the rules in membrane 3 will be used instead. The

symbol δ is a directive to dissolve a membrane.

Transformation in the system continues until no further

transformation can happen. When that happens, the

system is halted.

Membrane computing has been used successfully to

solve various computation problems such as the

satisfiability problem [23] and robot path planning [24].

Tools such as P-Lingua [25], [26] have been developed

to facilitate simulation of membrane systems.

Fig. 2: A simple membrane computing system.

Cellular automata [27] consist of a lattice of

interconnected finite state machines called cells, a set of

allowable states and a transition function. The alteration

of cell states occurs synchronously governed by a local

transition function and the states of neighboring cells.

Artificial chemistry can be thought of as cellular

automata where the cells can move around [9]. Cellular

automata have been used successfully in solving

problems in nature and computer science such as

simulating mangroves rehabilitation [28], robot path

planning [29] and edge detection [30].

Evolutionary computation [31], [32] is a computing

method inspired by the reproduction, mutation and

crossover of cell DNAs. The chromosomes consisting of

genes of a DNA are used to encode fitness parameters.

The fitness parameters are evaluated using a fitness

function in which an evolutionary computing method will

attempt to find a global minimum or a global maximum.

5

Starting with an initial population of DNAs, the search is

conducted until a target is found or a certain preset

number of generations have been explored.

2.3. Comments

From the literature reviewed above, it can be seen that

there are two different approaches in the current research

of artificial chemistry and artificial cells. One is to model

chemistry and cells for analysis and prediction, and

another is to compute using concepts in chemistry and

cells. Research work related to the first approach is

Synthon, Biodrive, ECELL, tile based AChem, string

based AChem and the Organic Builder. Research work

related to the second approach is cellular automata,

evolutionary computation and membrane computing.

aCell proposed in this research work represents an

attempt fill in the gap between these two approaches by

bringing them closer.

The description below explains why the Organic

Builder from the first approach and membrane computing

from the second approach are chosen as two starting

points of aCell and highlights how aCell differs from

existing research work.

Among the current research, the Organic Builder

shows potential for simulating cell processes using

molecules explicitly. Therefore, its approach is adopted

in aCell while mathematical simulation which is used in

BioDrive and E-CELL is not adopted. aCell extends the

approach of the Organic Builder further by simulating

artificial molecules and cells in a 3-D space instead of a

2-D space. The synthon approach is too detailed for aCell

because aCell needs to strike a balance between serving

the needs of AChem and computation. String based

AChem does not support detailed simulation of molecule

movement from one location to another in a simulation

space. Although tile based AChem supports that, the way

the Organic Builder simulates movement is still closer to

what aCell intends to achieve.

The main difference between aCell and E-Cell is the

focus on the simulation of individual molecules and the

use of uniform timescale. Although this is not be efficient

enough for the simulation of a large number of molecules,

it is useful for investigating every detail at the molecular

level. This level of investigation is still needed when

there are still gaps in our understanding of biological cells.

Following the research reported in [19], aCell uses the

concept of morphogenesis and cell reproduction.

However, the shape formed by cells in aCell is a simple

one following just the shape of the simulation space. The

concept of food is used by aCell, but food input is carried

to cells by an input flow of molecules instead of being

placed in advance in a simulation space. As cell death

encourages more renewal and exploration, aCell uses an

age limit to simulate programmed cell death.

aCell uses the concept of membrane found in

membrane computing to enhance the efficiency of

computation and to compartmentalize certain chemical

reactions. However, it only supports one membrane per

cell and does not support a hierarchy of membranes per

cell as in membrane computing. As the concepts of

rewriting rule of membrane computing and the Organic

Builder are closely related, aCell uses the features of their

rewriting rules with some modifications to specify

chemical reactions.

As membrane computing and the Organic Builder are

two directly related work to aCell, a detailed feature list

is presented in Table 1 to show the features adopted by

aCell. How aCell implements the features will be

described in the following two sections of this paper.

Table 1: Features adopted by aCell.

 Features Membrane

Computing

The

Organic

Builder

aCell

 AChem

1 Molecules √ √ √

2 Molecular bonds √

3 Coordinates of

molecules and

cells

 √ √

4 An explicit flow

of molecules

into and out of

the simulation

space

√ √

5 3D simulation

space

 √

6 Reactions

triggered by

collisions or

proximity

 √ √

7 Endothermic and

exothermic

reactions

√ √

8 Rewriting rules

for reactions

√ √ √

 Artificial Cell

9 Cell mutation √ √ √

10 Aging of cells √ √

6

11 Changes to

membrane

permeability

based on the

energy levels of

cells

√ √

12 Single layer of

cell membrane

√ √ √

13 Multiple layers

of cell

membrane

√

14 Cell DNA √ √ √

15 Cell

reproduction

√ √ √

3. THE BUILDING BLOCKS OF ACELL

The aCell model has two major parts: the building

blocks and the processes of the model. The building

blocks will be described first in the following subsections

followed by the last subsection which explains the

reasons for the design decisions made. The next section

will describe the processes.

There are four building blocks in the model. They are

the definition of a molecule or an atom, the definition of

a cell, the reaction among a group of molecules and the

simulation space.

3.1. The Definition of a Molecule or an Atom

A sphere with a radius of one unit length is used to

represent a molecule or an atom. The radius is a constant

regardless of the actual size of the molecule represented.

A molecule in this model can have one to 𝑛 atoms.

Each molecule has an ID, a name and a state number.

The ID is a unique identifier in the system and the name

can be a chemical name (𝐻2𝑂), a common name (water)

or a generic name (𝐴, 𝐵, 𝐶, …) . The state number

accounts for the shape of the molecule and the electrical

charges held by the molecule. The range of the state

number is from zero to the maximum positive integer

value supported by the programming language used to

implement the model.

Fig. 3(a) shows a simulation space of aCell with ten

molecules and four cells. In this example, the molecules

are colored green, and the cells are colored brown. The

colors can be set to any colors as needed. The simulation

space is 40-unit length at each dimension.

Fig. 3: An example of aCell simulation space at time

step 0 and time step 700.

Each molecule in Fig. 3(a) has an ID number, a name

and a state number. However, to avoid clutter, only one

molecule is shown with its description label. At the

location (24, 14, 39), there is a molecule with the ID

number 7. Its name is Food, and it has a state number of

1. The character ‘-’ is just a text separator to separate the

name from the state number. For visualization only, a

character of either ‘I’ or ‘O’ is displayed on the right side

of the state number to indicate whether the molecule is

“Inside” or “Outside” the membrane of a cell. It is not

part of the name of a molecule. The coordinates of the

molecule shown are also for the purpose of visualization

only. Fig. 3(b) shows how the simulation space can look

like at time step 700 after new molecules are inserted and

reactions have occurred.

3.2. The Definition of a Cell

A sphere with a radius of one unit length and with the

name DNA is a special molecule used to represent the

DNA of a cell. It is always stationary and is positioned at

the center of a cell and enclosed within a cell membrane.

The name of the DNA molecule can be changed to other

more descriptive names if necessary. The distance from a

DNA molecule to its membrane is fixed at 3-unit length.

The value 3 is an arbitrarily set number and it can be

changed to a different distance if needed. It is set to be

the same as the distance required for molecules to be

within close enough proximity for a reaction to occur.

This enables all molecules within a cell to be close

enough for them to react among themselves. More details

about reaction and close proximity will be explained in

the next section. In Fig. 3(a), there is a DNA molecule

with the ID number 3 and a state number of 1 at location

(5, 15, 35).

The center of each cell, which has a DNA molecule, is

placed 10-unit length apart from the DNA molecules of its

neighboring cells. This rule of placement is followed

7

when a new cell is reproduced. This predefined distance

for the placement of a new cell prevents the cells in a

simulation space from being packed too tightly together

and blocking molecules from moving between two cells.

The inter-cell distance can be changed depending on the

needs of a simulation.

The membrane of a cell resists movement of

molecules into and out of a cell. This resistance allows a

cell to accumulate inside its membrane the molecules it

needs, such as food molecules. It also prevents molecules

which a cell does not need, such as waste molecules from

entering. This mechanism of impediment will be

described further in the next section together with the

description of the movement of a molecule.

For each type of molecules used in a simulation, two

membrane resistance values need to be specified. One is

when the molecule is entering a cell and another is when

the molecule is exiting a cell. The value can be an integer

value between 0 and 100 where 0 means no resistance and

100 means total resistance. When a molecule is going to

move though a membrane, a random integer between 1 to

100 is generated to assess whether the move succeeds. If

the integer is greater than the resistance value, the move

succeeds, and fails if it is otherwise.

3.3. Reactions Among Molecules

A reaction in the aCell model is specified with a

statement using the following syntax.

ID = 𝑛

Energy = 𝑒

𝑥1 + 𝑥2 + .. + 𝑥𝑚 -> 𝑦1 + 𝑦2

+ .. + 𝑦𝑛

𝑛 is a positive integer used to specify the unique

identifier of a reaction. 𝑒 is the amount of energy needed

for the reaction to occur or the amount of energy released

by the reaction. A positive energy value indicates the

amount of energy added to the simulation space (for an

exothermic reaction) while a negative value indicates the

amount of energy subtracted from the simulation space

(for an endothermic reaction). 𝑥1 , 𝑥2 , …, 𝑥𝑚 and 𝑦1 ,

𝑦2, …, 𝑦𝑚 each represents a molecule or an atom. Some

examples are shown in Table 2.

There are only two operators in a reaction statement.

The operator ‘+’ indicates that the reactants (on the left-

hand side) are all in close proximity among themselves

and the products (on the right-hand side) are all in close

proximity among themselves. Close proximity is defined

as within a distance of 3-unit length apart. The operator

‘->’ indicates the direction of the reaction. When the

energy requirement is fulfilled and the reactants are in

close proximity, the reactants are transformed into the

products which are also placed in close proximity. The

character ‘-’ is not an operator. It is just a text separator.

Table 2: Two examples of the reaction syntax.

Reaction 𝐻2𝑂 ⇌ 𝐻+ + 𝑂𝐻−

Syntax ID = 1

Energy = 1

H2O-1 ->

H-2 + OH-3.

ID = 2

Energy = -1

H-2 + OH-3 ->

H2O-1.

Reaction 𝐶6𝐻12𝑂6 + 6𝑂6 → 6𝐶𝑂2 + 6𝐻2𝑂

Syntax ID = 1

Energy = 5

C6H12O6-1 + O2-1 + O2-1 + O2-1 +

O2-1 + O2-1 + O2-1 ->

CO2-1 + CO2-1 + CO2-1 + CO2-1 +

CO2-1 + CO2-1 + H2O-1 + H2O-1 + H2O-

1 + H2O-1 + H2O-1 + H2O-1.

Although the amount of energy consumed or released

by a reaction should ideally be mapped appropriately to

reality, it is currently set arbitrarily. A correct mapping

scheme is considered as future research work to be done

together with biochemists. Similarly, the state number of

a molecule is also set arbitrarily.

For a reaction to occur, sufficient local energy and the

presence of all the molecules on the left-hand side in

close proximity are needed. Based on the total amount of

global energy E, specified before a simulation run, the

amount of local energy at each coordinate is calculated as

𝐸/𝑉 where 𝑉 is the volume of the simulation space.

3.4. The Simulation Space

The length of each dimension of the simulation space

can be preset to any value and needs not be the same for

all dimensions. The six sides of the simulation space can

each have a wall or nothing. The top side and the bottom

side are usually left open to allow the flow of molecules

into and out from the simulation space as shown in Fig.

4. Without a wall, if a molecule moves beyond a

8

boundary of a side, the molecule is removed from the

simulation. If there is a wall, the molecule stops moving

and stays in place.

Fig. 4: A simulation space walled up at four sides.

3.5. Simplifications Adopted by aCell

By keeping the size of every molecule and atom the

same in aCell, aCell sacrifices the modeling of physical

dimensions. This means whether it is a big molecule or a

small one, it will still fit into the same spot in a simulation

space resulting in inaccuracies in the location and volume

of molecules. However, this design decision has its

advantage. The movement of molecules will be much

easier to simulate because rotation of molecules need not

be taken into the consideration.

It is common in nature for a large molecule to have

reactions occurring simultaneously with various other

molecules at different parts of the large molecule. With

the reaction rule of aCell, simultaneous reactions can still

be simulated regardless of whether size is taken into

consideration, although the actual physical locations

where the reactions occur simultaneously will be

inaccurate. As long as all the molecules reacting with the

large molecule are on the left-hand side of a reaction rule,

the reaction will be processed as a reaction occurring at

the same time.

Furthermore, when there is insufficient or imprecise

knowledge in biochemistry, abstract molecules will often

be used in aCell. In this case, the correct size of an

abstract molecule will be inaccurate anyway.

Proximity, not collision, is used to trigger a reaction

in aCell. Therefore, mass, velocity and momentum are

not modeled in aCell. As what will be described in the

next section about movement, every molecule and atom

in aCell only moves to a location next to the original

location in one time step of a simulation run. This further

simplifies the simulation of movement in aCell. Similarly,

the reason for cells in aCell to be stationary is also for the

sake of simplicity in simulation. The mechanism of cell

movement is complex, and it sometimes needs inter-cell

co-ordination which is even more complex.

Reaction distance directly affects the number of

possible reactions which can occur. This is because the

longer the distance, the larger the number of molecules

which can participate in a reaction. The distance is

currently arbitrarily set at 3. The distance from a DNA

molecule to the membrane surrounding it is also set at 3.

Setting both to the same value enables the membrane to

act as a capsule to cause reactions involving the DNA

molecule to be more likely to occur. This technique is

also used in membrane computing to facilitate

computation.

In nature, the reaction distance may vary depending

on the types of reactions and the types of cells. Thus,

support for these complex features is omitted in aCell at

this stage. They are considered as possible future

extensions to aCell when the implications of different

reaction distances, different cell sizes and different cell

types are further studied. At the current stage, the size of

each cell is uniform in aCell and only one type of cells is

supported in a simulation run.

The aCell model aims to strike a balance among three

factors; closeness to reality, fast simulation speed and

high flexibility to model the nature of a cell. By explicitly

modeling each molecule in aCell instead of modeling

collectively using differential equations, each molecule

can be individually specified, and the actions of each

molecule can be individually tracked. This provides aCell

the high flexibility needed in future work to model each

element of a cell using only molecules. To counter the

slowness in explicit simulation, a highly realistic

representation used in the synthon model is not used and

the physical aspects are simplified. The current aCell

model simulates molecules and cells at a higher abstract

level than that of the synthon model.

4. THE PROCESSES OF ACELL

In this section, the eight major processes of the aCell

model are described. They are 1) cell energy update, 2)

cell membrane permeability adaptation, 3) cell death, 4)

cell reproduction, 5) cell fitness evaluation, 6) input of

9

new molecules, 7) reactions among molecules and 8) the

movement of a molecule.

4.1. Overview of the Processes

Before a simulation run of aCell, the characteristics of

each type of molecules and the reactions have to be

specified. In our implementation of an aCell simulator,

they are specified in two text files,

MoleculeWorld.txt and Reactions.txt. The

color, the name, the state number and the membrane

resistance values of each type of molecules are specified

in MoleculeWorld.txt. The reactions are specified

in Reactions.txt. Details about the format of the

text files can be found in (Goh et al., 2019).

Fig. 5 shows an overview of the aCell model

components and how they interact. Except for the files

MoleculeWorld.txt and Reactions.txt, all the

files in Fig. 5 specify or log the states of a simulation at

each time step. MoleculeInput.csv specifies the

types of molecules and the number of molecules to inject

into the simulation space at each time step. The rest of the

files shown on the right side of the simulator are log files,

which are the output of the simulator.

Fig. 5: An overview of the model components and how

they interact.

A simulation run of aCell starts with either an empty

simulation space or a simulation space with some initial

cells. When cells are not involved in a simulation run, for

example in a run to simulate reversible chemical

reactions, the simulation run starts with an empty space.

When cells are needed, for example for solving an

optimization problem where the chromosomes consisting

of genes of a DNA are needed to encode fitness

parameters of the optimization problem, some initial cells

are inserted at the beginning. The number of initial cells

can be specified according to the needs of a simulation

run.

aCell supports direct insertion of new molecules at

specified or random locations in a simulation space at

each time step of a simulation run. However, new

molecules are normally inserted from the top of the

simulation space at random locations.

When a molecule moves, it can move to randomly one

of its neighboring locations or stays put at each time step.

The probability to move downwards is designed to be

greater so that a flow of molecules moving into and out

of the simulation space can be simulated. This is because

cells which are stationary in nature often rely on flow

currents to bring nutrients to them. If the target location

where a molecule is going to move to is already occupied,

the molecule stays in place.

All cells are stationary in aCell. If sufficient resources

such as food are provided, the cells can reproduce.

Normally a simulation run involving cells will let the

simulation space be filled up with cells first before

inserting molecules for an intended experiment.

To simulate chemical reactions, every molecule is

evaluated at each time step to see if it is involved in a

reaction. The selection of molecules for evaluation is

random. Furthermore, if a molecule can be involved in

more than one reaction, one reaction is randomly decided.

DNA molecules are treated in the same way as other

molecules for chemical reactions. After a reaction, the

reacting molecules are eliminated, and the resulting

molecules are produced. If a molecule does not fulfill the

conditions of any reactions, the molecule is moved as

described above.

The reproduction process, the aging process and the

death of a cell are not simulated as chemical reactions in

aCell yet because their reaction pathways are complex

and have not been fully understood yet. Thus, they are

simulated at high abstract levels and the use of

programming constructs is necessary.

For a cell to reproduce, the cell must reach a certain

age and must have a certain minimum amount of energy.

Age in aCell is calculated based on the number of

metabolism reactions which has occurred in a cell from

its introduction to the current point in time. Mutation

occurs in the chromosomes of a new cell of the next

generation during reproduction. The degree of mutation

is dependent on the difference between the current fitness

value of a parent cell and the optimum fitness value. The

bigger the difference, the more aggressive the mutation.

The evaluation of the fitness value of a cell is also

implemented at a high abstract level using programming

constructs instead of chemical reactions. This is because

10

it is not known yet how a number system exists in nature

with molecules and how a comparison of two numbers

can be made using chemical reactions.

A cell will die when it ages beyond a certain age limit,

has less than 0 amount of energy or has more energy than

a certain overheat energy level. The age limit and the

overheat level are parameters which can be specified.

When a cell dies, the cell and its DNA molecule are

removed from the simulation space.

 aCell currently has a basic membrane

permeability adaptation scheme. When the energy level

in a cell is more than half the cell overheat level, the

membrane of the cell will prevent food molecules from

entering the cell, thus preventing metabolism reactions

from occurring. This is meant to ensure that the cell does

not kill itself by overheating.

4.2. Details of the Processes

The main procedure of aCell is shown in Fig. 6. The

details of the processes will be explained according to the

sequence in the main procedure to show how the

processes come together in a simulation loop.

Fig. 6: The main procedure of aCell.

• Cell Energy Update, Cell Membrane Permeability

Adaptation, Cell Death and Cell Reproduction

In the main simulation loop, the first cell process

updates the energy level of every cell by deducting a

predefined amount of energy from each cell. Thereafter,

the membrane permeability of every cell towards Food-

1 molecules is updated. Food-1 molecules are

molecules which can release energy when they react with

the DNA molecule of a cell in a metabolic reaction. If the

energy of a cell is greater than or equal to half of

CELL_OVERHEAT_LEVEL, its membrane resistance to

Food-1 entering is set to 100. Otherwise, the resistance

is set to 0.

There are various theories on how aging occurs in

nature. In aCell, a metabolism counter is used to

determine age. Whenever a metabolic reaction occurs in

a cell, the metabolism counter and thus the age of the cell

is incremented by one. When a cell dies, the cell and its

DNA molecule are removed from the simulation space.

However, other molecules contained within the cell

membrane remain. The conditions for cell death are

shown in Fig. 7.

Fig. 7: The conditions of cell death.

Fig. 8: The pseudo-code of cell reproduction.

The pseudo-code of cell reproduction is shown in Fig.

8. When a cell is above a predefined maturity age and

contains energy above a predefined threshold value, it

duplicates itself to produce a new cell nearby if there is

an empty spot next to the cell for the new cell to come

into existence. The DNA of a cell is a stationary molecule

which can react with other molecules, and it also contains

an array of genes. A gene is currently represented by a

11

floating-point number. It can easily be changed to any

suitable data type depending on the purpose of a cell

simulation. The reproduction process transfers energy

from a parent cell to a new cell. The amount of energy

transferred is equivalent to the amount set in

INITIAL_REPRODUCED_CELL_ENERGY.

In order to determine the value of each gene in the new

cell, the difference between the fitness value of the parent

cell and the parameter OPTIMUM_FITNESS is

calculated, and the difference is used to determine the

level of mutation to introduce to each gene of the new cell.

The bigger the difference, the bigger the mutation step.

For each gene in the new cell, the gene value is set to the

gene value of the parent cell plus a random value between

the negative value of the mutation step and the positive

value of the mutation step.

• Cell Fitness Evaluation

The value of each gene of a cell is a fitness parameter.

The fitness of a cell is calculated by fitting the value of

each gene into a fitness function specified for a

simulation run. From the results of fitness evaluation of

every cell, the cell with the best fitness is determined and

logged at each time step. The fitness value and the fitness

parameters of each cell are also logged.

• Input of New Molecules

New molecules are generated according to a

specification file. In our implementation, it is named

MoleculeInput.csv. The file specifies the number

of new molecules, the types of molecules to be inserted

and the locations of insertion for each time step of a

simulation run. The location of insertion is normally set

to random locations at the top of the simulation space.

Details about the format of MoleculeInput.csv and

how the input can be specified can be found in [33].

The new molecules are regarded as having moved at

the time step when they are introduced and therefore are

stored in a list called afterList. afterList is a

linked list used internally by the simulator of aCell. It is

introduced here to provide context to the description of

processes related to molecules. A molecule which has

moved or reacted with other molecules is put into

afterList while a molecule who has not, remains in

another linked list called beforeList.

• Reactions Among Molecules

Every molecule in beforeList is processed at

every time step. Molecules in beforeList are shuffled

randomly first before selection for processing begins to

ensure that the order of molecule selection from

beforeList is random.

A molecule can only either participate in a reaction

once or move once per time step. While there are still

molecules in beforeList, a molecule is selected and

removed from beforeList and processed as described

below. We shall designate the selected molecule as m for

the purpose of the description.

After m is selected from beforeList, it is checked

to see whether it can react with other molecules. Every

molecule within close proximity from m is considered and

every possible reaction is considered. Only one out of the

possible reactions is selected randomly to occur. All the

reacting molecules of that reaction are removed from

beforeList and the new molecules which are the

results of the reaction are inserted into afterList. A

molecule cannot react with another molecule through a

cell membrane. If the search fails to find a possible

reaction or if there are insufficient number of empty

locations within close proximity from the location of m

for the resulting molecules to be placed, then no reaction

will occur.

If the matching reaction is a metabolism reaction,

which can only occur in a cell, 50% of the energy released

from the reaction is added to global energy and the other

50% is added to the cell where m is in. Thereafter, the age

which is the metabolism count of the cell is incremented

by one.

• The Movement of a Molecule

If a reaction involving m does not occur, m will move.

To process movement, whether m is within a cell

membrane or outside needs to be determined first. If it is

within a cell membrane, the destination of its movement

is determined without a downward flow. If it is not, it will

be determined with a downward flow. If a cell in the

natural world is stationary, it often positions itself or lives

in a spot where there is a stream of molecules flowing

through it in order for it to capture nutrients. aCell

simulates this behavior by simulating a tendency of a

molecule to move downward.

When a molecule in a location (𝑥, 𝑦, 𝑧) moves, it can

move randomly up to a location (𝑥1, 𝑦1, 𝑧 + 1), sideways

to a location (𝑥1, 𝑦1 , 𝑧) or downward to a location

(𝑥1, 𝑦1, 𝑧 − 1) where 𝑥1 ∈ {𝑥 − 1, 𝑥, 𝑥 + 1} and 𝑦1 ∈

{𝑦 − 1, 𝑦, 𝑦 + 1}. Including the current location of the

molecule, there are 27 possible neighboring locations for

the molecule to move to.

12

To simulate a downward flow, the nine possible

locations on top of the molecule m are designated by nine

numbers, 1 to 9. The nine possible locations at the same

level are designated by 10 to 18 and each of the nine

possible locations below are designated by two numbers

from 20 to 36. By generating a random integer between 1

to 36 to determine the destination location, the probability

of m moving to a location downward is 2/ 36 and the

probability of it moving to a location sideways or upward

is 1/ 36.

When a downward flow is not needed, the 27 possible

destination locations are designated by 27 numbers from

1 to 27. A random number between 1 to 27 is generated

to determine the destination location. After determining

the destination location, the movement mode of m is

considered. There are four modes of movement. They are

1) movement from space to space, 2) movement from

space to cell, 3) movement from cell to space and 4)

movement from one cell to another cell.

The first mode of movement does not need to consider

the membrane resistance against m. The other three

modes have to consider the membrane resistance. Each

molecule has two membrane resistance values, one

against it when it attempts to enter a cell and another

against it when it attempts to exit a cell. The resistance

values are specified for each molecule type in the

MoleculeWorld.txt specification file in our

implementation. To overcome the resistance, a random

number between 1 to 100 is generated and that number

must be greater than the resistance value.

If m moves from space to cell, it will need to overcome

the membrane resistance which prevents it from entering

a cell. If m moves from cell to space, it will need to

overcome the membrane resistance which prevents it

from exiting a cell. If m moves from one cell to another

cell, it will need to overcome both the membrane

resistance which prevents it from exiting the first cell and

the membrane resistance which prevents it from entering

the second cell.

If m fails to overcome a resistance value, it will remain

in place. If the destination location is already occupied by

another molecule, m will also remain in place. The six

sides of the simulation space can each have a wall or

nothing. If m moves beyond a side without a wall, m will

be removed from the simulation. If there is a wall, m will

stop moving and remains in place.

At the end, if m can successfully move, it will be

considered as acted and will be placed in afterList.

• Other Supporting Processes by the Simulator

After processing every molecule in beforeList, a

display text file of the current time step is generated to

enable the visualization of molecules and cells in the

simulation space. The text file contains commands of

Mathematica to display the molecules and the cells in 3-

D as shown in Fig. 3. The 3-D visualization facility of

Mathematica allows panning, rotating and zooming

operations.

At the end of a time step, the total count of each type

of molecules in the simulation space and the total count

of each type of molecules that have exited the simulation

space are logged. The final amount of global energy at

that time step is also logged. Before moving to the next

time step, all molecules in afterList are moved back

to beforeList and the time step counter is

incremented by one.

5. EXPERIMENTS AND THE RESULTS

To test the capabilities of aCell, seven experiments

were conducted using aCell to simulate biochemical

reactions (1 and 2), perform fundamental computing

operations (3 to 5) and solve optimization problems (6

and 7). They were

1. Formation of larger structures from small

molecules

2. Reversible chemical reactions

3. Simulation of an AND gate

4. Simulation of a NOT gate

5. Simulation of a 1-bit memory element

6. Searching for the global minimum of the

Restriping function when n = 2. The global

minimum is 𝑓(0,0) = 0, the search domain was

−5.12 ≤ 𝑥𝑖 ≤ 5.12 and 𝐴 = 10.

7. Searching for the global minimum of the

Rosenbrock function when n = 2. The global

minimum is 𝑓(1,1) = 0 and the search domain

was −5 ≤ 𝑥𝑖 ≤ 5.

By using the same framework throughout the

experiments, the experiments attempted to demonstrate

that aCell is a model suitable to serve as the groundwork

for the study of the relationship between biochemical

reactions in cells and computation using cells in the future.

There are four key aspects of chemistry essential to

cellular processes [4]. They are 1) covalent and

noncovalent interactions among molecules, 2) small

13

molecules serving as building blocks for larger structures,

3) reversible chemical reactions and 4) reactions which

can store and release energy. The first aspect is already

supported by the nature of the rewriting rules used by

aCell. The fourth aspect is also supported by allowing

each reaction in aCell to be specified as either

endothermic or exothermic. Thus, the second aspect and

the third aspect were examined with experiments 1 and 2

respectively.

The basic building blocks of a computing system are

the AND gate, the OR gate and the NOT gate.

Experiments 3 and 4 were meant to verify that aCell can

simulate them. As a simulation of an AND gate is similar

to the simulation of an OR gate, that experiment and its

result is not described in this paper. Experiment 5 to show

that aCell can simulate a 1-bit memory element was

meant to demonstrate that a complex digital circuit can

be simulated using aCell reactions without following the

usual way of connecting logic gates together.

Experiments 6 and 7 were experiments to use aCell to

solve two typical benchmark fitness functions normally

used in evolutionary computing.

5.1. Common Setup for the Experiments

A typical simulation run of aCell consists of four steps.

1) Specification of the details of the simulation

space, molecules, cells, reactions, the input of

new molecules into the simulation space and the

number of time steps to run.

2) Running the simulation where reactions occur,

and cells reproduce and die.

3) Termination of the simulation when the

specified number of time steps to run is reached.

4) The log files are studied to obtain the results of

the run.

In the first step, there are two types of specifications.

One is the specification in text files, namely,

MoleculeWorld.txt, Reactions.txt and

MoleculeInput.csv. Another is the setting up of

parameter values in the aCell simulator.

Reactions.txt of each experiment is shown

together with the result in each figure from Fig. 9 to Fig.

14. MoleculeWorld.txt and

MoleculeInput.csv files are not shown in this

paper due to the limitation of space. Reading the files are

not needed to examine the results because the charts show

the input molecules and the output molecules of the

experiments. Nevertheless, the files are available for

download for the details at

https://github.com/clgoh3221/Specific

ations.

aCell parameters were set to values as shown in Table

3. They were set to reasonable arbitrary values to provide

a fixed baseline environment. The input of molecules

specified in MoleculeInput.csv was then calibrated

to suit the baseline and the requirements of the

experiments.

Table 3: Values of aCell parameters.

Parameter Value

LENGTH_OF_X_DIMENSION 40

LENGTH_OF_Y_DIMENSION 40

LENGTH_OF_Z_DIMENSION 40

NUMBER_OF_INITIAL_CELLS 4

SPACE_BETWEEN_TWO_NUCLEI 10

INITIAL_CELL_ENERGY 100.0

ENERGY_USED_BY_A_CELL_PER_TIME_ST

EP

1.0

MINIMUM_ENERGY_FOR_REPRODUCTION 150.0

INITIAL_REPRODUCED_CELL_ENERGY 100.0

CELL_OVERHEAT_LEVEL 500.0

AGE_LIMIT 10

MATURITY_AGE 1

GLOBAL_ENERGY 64100

NUMBER_OF_GENES_IN_A_CELL 2

For the experiments, the reaction distance was set to

3-unit length and a simulation space of 40-unit length x

40-unit length x 40-unit length was used. The space could

contain 4 x 4 x 4 artificial cells. The energy released by a

metabolic reaction in a cell was fixed at an arbitrary 150

units.

5.2. Formation of Larger Structures from Small

Molecules

In experiment 1 (Fig. 9), the goal is to form AAAAA-

1 molecules from A-1 molecules. The figure shows the

average number of molecules by type detected in the

simulation space of ten simulation runs with ten different

random seeds.

Reactions 1 and 2 were reactions of cell metabolism.

Reaction 1 represented a reaction which occurred when a

food molecule was detected. It produced a P-1 molecule

which could react with a food molecule to release energy

as in reaction 2. Reaction 2 was specified as a metabolic

14

reaction and made known to the aCell simulator. Every

time reaction 2 occurred in a cell, the age counter of the

cell was incremented by one. The presence of a DNA-1

molecule in a reaction was to ensure that the reaction only

occurred inside a cell. Reaction 3 was used to get rid of

excess of P-1 molecules in a cell.

Fig. 9: Formation of larger structures.

Reactions 4 to 7 were the reactions which formed

larger molecules in a cell. A-1 represented the smallest

molecule type and subsequently larger molecules type

were represented by AA-1, AAA-1, AAAA-1 and

AAAAA-1. The permeability of the cell membrane of

each cell was set to trap molecules of type A-1 to type

AAAA-1 within to facilitate the formation of molecule

type AAAAA-1. This trapping of molecules enabled an

efficient process to form larger molecules, similar to how

cell membranes are used in nature.

The experiment started at time step 0 with four initial

cells. Food molecules were inserted throughout the

experiment to enable the cells to reproduce and to sustain

themselves. From time step 401 to time step 700 A-1,

molecules were injected. AAAAA-1 molecules started to

form inside the simulation space at time step 450 showing

the formation of larger structures from small molecules.

5.3. Reversible Chemical Reactions

In experiment 2 (Fig. 10), molecule types A-1 to D-

1 were used to represent the general form of a simple

reversible reaction. Artificial cells were not used in this

experiment because reversible reactions can occur

without cells.

Fig. 10: Simulation of a reversible chemical reaction.

Throughout the experiment, molecules of type A-1

and B-1 were injected at each time step. Fig. 10 shows

the average number of molecules by type detected in the

simulation space of ten simulation runs with ten different

random seeds. The result shows that the reactants and the

products could reach an equilibrium and a reversible

reaction can be simulated in aCell.

5.4. Simulation of an AND Gate

The result of experiment 3 is shown in Fig.11.

Reactions 1 to 3 performed the same functions as

reactions 1 to 3 in experiment 1. Reactions 4 to 7 defined

the AND operation. InATrue-1 and InAFalse-1

molecules were used to represent the two possible states

of one input line labelled A and InBTrue-1 and

InBFalse-1 molecules were used to represent the two

possible states of another input line labelled B.

OutTrue-1 and OutFalse-1 molecules were used

to represent the two possible states of the output of the

AND gate.

Fig. 11: Simulation of an AND gate.

15

Four initial cells were set up in the experiment at time

step 0 and Food-1 molecules were injected at every time

step of the experiment. After giving the initial cells

sufficient amount of time to reproduce, from time step

300 to time step 349, InATrue-1 and InBTrue-1

molecules were injected. From time step 1050 to time

step 1099, InAFalse-1 and InBTrue-1 molecules were

injected, changing the input to the simulated AND gate.

The time gap between the two molecule injections was

needed for the molecules from the first injection to exit

from the simulation space completely before the second

injection began. The duration of the gap was determined

by adjusting the gap iteratively based on simulation

results.

The number of InATrue-1, InAFalse-1 and

InBTrue-1 molecules shown was the number of

molecules which existed in the simulation space at each

time step. However, the number of OutTrue-1 and

OutFalse-1+molecules shown was the number of

molecules exiting the simulation space at the bottom of

the simulation space. The exiting molecules were counted

this way because an AND gate is only useful when an

output is detected outside the gate.

In the experiment, the number of OutTrue-1

molecules and OutFalse-1 molecules which exited

the AND gate was small in the range of 1 to 3. To indicate

clearer the number of OutTrue-1 molecules and

OutFalse-1 molecules in Fig. 11, the number had

been multiplied by 10. In other words, every ten

OutTrue-1 or OutFalse-1 molecules shown in Fig.

11 was just one molecule.

There were not any injections of InBFalse-1

molecules because showing that reactions 4 and 5 worked

and showing that reactions 6 and 7 worked is redundant.

The result shows that aCell is able to simulate an AND

gate.

A slight variation to reactions 4 to 7 of this experiment

can be used to show that aCell can simulate an OR gate.

Therefore, that experiment and its result is not described

in this paper.

5.5. Simulation of a NOT Gate

Fig. 12 shows the result of experiment 4. It shows that

aCell is able to simulate a NOT gate. The setup of this

experiment was similar to that of experiment 3.

Fig. 12: Simulation of a NOT gate.

5.6. Simulation of a 1-bit Memory Element

Although in theory, a memory element can be

constructed by devising a way to link together the

simulated logic gates above, this experiment aimed

to show that there is another way to do so by

mapping the necessary operations related to

memory to reactions that can be processed by aCell.

The role of each molecule type in the reactions is

described in Table 4. The result of experiment 5 is

shown in Fig. 13.

Table 4: Molecule types for the experiment to simulate a

1-bit memory element

Type Description

InitMemory-1 For the creation of StoreInit-1 in a

cell

StoreInit-1 A storage element to store a state

in a cell

WriteFalse-1 For writing a false state into

StoreInit-1

WriteTrue-1 For writing a true state into

StoreInit-1

StoreFalse-1 A true state stored in a cell

StoreTrue-1 A false state stored in a cell

Read-1 For reading a state from a cell

MemoryOutFalse-1 Output indicating a true state is

stored a cell

MemoryOutTrue-1 Output indicating a false state is

stored a cell

Destroy-1 For destroying the memory

element in a cell

16

Fig. 13: Simulation of a 1-bit memory element.

Reactions 1 to 3 were similar to the reactions used

before for cell metabolism. Reaction 4 initialized a cell so

that it contained a molecule which could store a state. The

InitMemory-1 molecule served as a control molecule

which could be used to replenish a cell with a

StoreInit-1 molecule. Stopping the injection of

InitMemory-1 molecules would stop cells from

storing memory states. Reaction 5 ensured that each cell

would only store one state. Reactions 6 and 7 were used

to write a memory state into a cell. Reactions 8 to 13 were

used to support over-writing of a memory state. Reactions

14 and 15 were used to read a memory state from a cell

and reactions 16 and 17 were used to destroy a memory

molecule in a cell.

From the result, it can be seen that from time step 400

to time step 650, StoreInit-1 molecules were

generated after the injection of InitMemory-1

molecules. Then StoreInit-1 molecules were

converted to StoreFalse-1 molecules correctly by a

write operation.

Thereafter, a read operation was started at time step

700, and it worked correctly because

MemoryOutFalse-1 molecules were detected at the

exit of the simulation space from time step 850 to time

step 1000.

A write operation was initiated at time step 900 to

change the memory state to true. When it was followed

by a read operation at time step 1100, one

MemoryOutTrue-1 molecule was detected at the exit

between time step 1200 and time step 1250.

For the same reasons explained before, as the number

of MemoryOutTrue-1 molecules and

MemoryOutFalse-1 molecules was small, it was

multiplied by ten to enable visualization in the chart.

5.7. Searching of the Global Maximum and the Global

Minimum of Fitness Objective Functions

The results of experiments 6 and 7 are shown in Fig.

14 and Table 5. For each experiment, the aCell simulation

was run ten times with ten different random seeds.

GALGO

(https://github.com/aasivas/GALGO) was

used as a baseline for comparisons with aCell to show

how aCell performed relatively. It was compiled and run

with its default parameters and compilation options

described in its README file.

Fig. 14: Finding the global minimum of the Rastrigin

function and the Rosenbrock function.

Table 5: Average final fitness values of aCell and

GALGO (better results are in bold).

Function Method Average

Fitness

Standard

Deviation

Rastrigin (n =

2)

aCell 3.07985 1.94053

 GALGO 2.29416 1.43225

Rosenbrock (n

= 2)

aCell 0.50082 0.70268

 GALGO 0.34752 0.45222

Only three reactions were needed for the experiments

for maintaining cells. Apart from the food molecules

which were needed by the cells, no other molecules were

injected throughout the experiments. The cells only used

mutation to search for the optimum fitness parameters.

To guide the mutation process, parameters in Table 6

were used. These parameters were determined after a

series of values had been evaluated. The results show that

in the most basic form using only mutation without using

any selection methods and cross-over operations, aCell

17

can solve simple optimization problems comparable to

GALGO.

Table 6: Mutation ranges used according to fitness

differences.

Parameter Exper

iment

 1 2 3

OPTIMUM_FITNESS 50.

00

0.00 0.0

0

MINIMUM_FITNESS

_PARAMETER

-

100.00

-5.12 -

5.00

MAXIMUM_FITNESS

_PARAMETER

10

0.00

5.12 5.0

0

FITNESS_DIFF_EX

CELLENT

5.0

0

0.33 50.

00

FITNESS_DIFF_NO

RMAL

10.

00

1.00 10

0.00

MUTATION_STEP_E

XCELLENT

5.0

0

0.33 0.0

5

MUTATION_STEP_N

ORMAL

10.

00

1.00 0.2

0

MUTATION_STEP_B

AD

20.

00

3.00 2.0

0

DISCUSSION

It is hoped aCell can be used by researchers to learn

computing methods from AChem and cells. It is built for

future modifications and simplicity using a high-level

abstraction. Many of its features are parameterized for

flexibility and easy modification.

We have conducted fundamental tests to evaluate its

abilities to simulate and compute. aCell can readily

support many more reaction rules and many more cells in

larger simulation space. However, the areas of cell

chemistry to explore this is still yet to be determined

because guidance from the angle of cell biology is needed.

At its current form, aCell can simulate at a high

abstract level chemical reactions and basic cell processes.

In addition, it can also simulate the fundamental building

blocks of computation and can be used to solve simple

optimization problems. All of these can be accomplished

using the same method of defining molecules, reactions,

cells and molecule input in the structure provided by the

aCell model.

From the perspective of AChem and cell simulation,

aCell can model simple to complex molecules of different

configurations. It can model unlimited number of

biochemical reactions, subjected only to the limitations

of the underlying data structures used to implement the

simulator. By chaining biochemical reactions together,

complex biochemical reaction pathways can be simulated.

5.8. Future Work

In the area of AChem, the reactions and the molecules

involved in cell processes in nature should be studied

further so that they can translated to the formats usable in

aCell. This will reduce the use of programming

constructs and narrow the gap between biochemical

processes in nature and the processes of computation. For

example, current cell processes in aCell such as

reproduction, mutation and the sensing of the fitness of a

cell can be studied further to discover ways to specify

them with only molecules and reactions in aCell. In

addition, new cell processes such as genetic crossover,

cell movement and inter cell communication can be

introduced so that aCell can simulate biological cells

better and use the new processes to mimic computation

that occurs in nature. Ideally, every cell process in aCell

should be specified with only reactions and molecules.

In the area of computation, although aCell can

simulate the fundamental building blocks of computation,

it still needs to be extended to connect the building blocks

together. For example, gate connectors made up of

artificial cells are needed. Circuit efficiency still needs to

be measured and improved if aCell is extended and scaled

up to simulate complex network of logic gates to compute.

Looking at both AChem and computation, there are

two possible areas for exploration. Firstly, a quantifying

system based on reaction rules in nature for quantifying

the number of molecules in an area. Secondly, a

comparison system based on reaction rules in nature for

comparing two quantities. These two areas will lead to

the understanding of the number system working in

nature, which is directly related to computation.

6. CONCLUSION

This study proposes aCell, a flexible artificial cell

model that uses artificial chemistry to explore

information processing in natural cells and bio-inspired

computation. The model demonstrates capabilities in

forming large molecules, modeling reversible reactions,

implementing logic operations, storing state, and solving

optimization problems. aCell provides a unified platform

for simulating both essential cell biology and

computation using the same artificial chemistry

constructs. The model can be extended in future work by

incorporating more realistic biochemistry and scaling up

the complexity. The study contributes an accessible

18

modeling framework for investigating synergies between

biology and computation.

7. ACKNOWLEDGMENT

This research was supported by the Malaysian

Ministry of Higher Education (MoHE) through the

Fundamental Research Grant Scheme

(FRGS/1/2014/ICT02/MMU/02/3).

REFERENCES

[1] L. N. Castro, “Fundamentals of natural computing: an

overview,” Physics of Life Reviews, vol. 4, pp. 1-36,

2007.

[2] C. Langton, “Artificial life,” Artificial Life, pp. 1-47,

1989.

[3] L. Kari and G. Rozenberg, “The many facets of

natural computing,” Communications of the ACM, vol.

51, pp. 72-83, 2008.

[4] H. Lodish, A. Berk, C. A. Kaiser, M. Krieger, A.

Bretscher, H. Ploegh, K. C. Martin, M. Yaffe, and A.

Amon, Molecular Cell Biology, 6th ed., W. H. Freeman

and Company, 2007.

[5] H. Suzuki and P. Dittrich, “Artificial chemistry,”

Artificial Life, 15, pp. 1-3, 2009.

[6] T. J. Hutton, “The organic builder: a public

experiment in artificial chemistries and self-replication,”

Artificial Life, vol. 15, pp. 21-28, 2009.

[7] G. Păun, “From cells to computers: computing with

membranes (P systems),” Biosystems, vol. 59, pp. 139-

158, 2007.

[8] B. Song, K. Li, D. Orellana-Martín, M. J. Pérez-

Jiménez, and I. Pérez-Hurtado, “A survey of natured-

inspired computing: membrane computing,” ACM

Computing Surveys, vol. 54, pp. 1-31, 2021.

[9] T. J. Hutton, “Evolvable self-reproducing cells in a

two-dimensional artificial chemistry,” Artificial Life,

vol. 13, pp. 11-30, 2007.

[10] R. Sienkiewicz and W. Jędruch, “DigiHive: artificial

chemistry environment for modeling of self-organization

phenomena,” Artificial Life, vol. 29, pp. 235-260, 2023.

[11] T. Lenaerts and R. Bersini, “A synthon approach to

artificial chemistry,” Artificial Life, vol. 15, pp. 89-103,

2009.

[12] K. Kyoda, M. Muraki, and H. Kitano, “Construction

of a generalized simulator for multi-cellular organisms

and its application to SMAD signal transduction,” in

Pacific Symposium on Biocomputing, pp. 314-325, 2000.

[13] T. Yamamoto and K. Kaneko, “Tile automaton in the

well-mixed medium,” Physica D: Nonlinear Phenomena,

vol. 181, pp. 252–273, 2003.

[14] K.Tominaga, Y. Suzuki, K. Kobayashi, K.

Watanabe, T. Koizumi, and K. Kishi, “Modeling

biochemical pathways using an artificial chemistry,”

Artificial Life, vol. 15, pp. 115-129, 2009.

[15] T. Watanabe, K. Koizumi, K. Kishi, M. Nakamura,

K. Kobayashi, M. Kazuno, Y. Suzuki, Y. Asada, and K.

Tominaga, “A uniform framework of molecular

interaction for an artificial chemistry with

compartments,” in IEEE Symposium on Artificial Life,

pp. 54-60, 2007.

[16] K. Takahashi, K. Yugi, K. Hashimoto, Y. Yamada,

C. Pickett, and M. Tomita, “Computational challenges in

cell simulation: a software engineering approach,” IEEE

Intelligent Systems, vol. 17, pp. 64-71, 2002.

[17] K. Hashimoto, S. Seno, P. Dhar, and M. Tomita,

“Integrative modeling of gene expression and

metabolism with E-CELL system,” Artificial Life and

Robotics, vol. 6, pp. 99-107, 2002.

[18] H. Ohno, Y. Naito, H. Nakajima, and M. Tomita,

“Construction of a biological tissue model based on a

single-cell model: a computer simulation of metabolic

heterogeneity in the liver lobule,” Artificial Life, vol. 14,

pp. 3-28, 2008.

[19] S. Cussat-Blanc, H. Luga, and Y. Duthen, “From

single cell to simple creature morphology and

metabolism,” in Artificial Life XI, pp. 134-141, 2008.

[20] N. Djezzar, N. Djedi, S. Cussat-Blanc, H. Luga, and

Y. Duthen, “L-systems and artificial chemistry to

develop digital organisms,” in IEEE Symposium on

Artificial Life, pp. 225-232, 2011.

[21] T. Schmickl, M. Stefanec, and K. Cralisheim “How

a life-like system emerges from a simplistic particle

motion law,” Scientific Reports, vol 5, 37969, 2016.

[22] M. Stefanec and T. Schmickl, “PPS3D: a 3D variant

of the primordial particle system,” In ALIFE 2022, pp.

28-30, 2022.

[23] Y. Jimen and A. Fujiwara, “An asynchronous P

system using branch and bound for the satisfiability

problem,” in the Fifth International Symposium on

Computing and Networking (CANDAR), pp. 141-152,

2017.

19

[24] I. Pérez-Hurtado, M. J. Pérez-Jiménez, G. Zhang,

and D. Orellana-Martín, “Robot path planning using

rapidly-exploring random trees: a membrane computing

approach,” in the 7th International Conference on

Computers Communications and Control (ICCC), pp. 37-

46, 2018.

[25] I. Pérez-Hurtado, D. Orellana-Martín, G. Zhang, and

M. J. Pérez-Jiménez, “P-Lingua in two steps: flexibility

and efficiency,” Journal of Membrane Computing, vol.1,

pp. 93–102, 2019.

[26] I. Pérez-Hurtado, D. Orellana-Martín, M. A.

Martínez-del-Amor, L. Valencia-Cabrera, and A. Riscos-

Núñez, “A new P-Lingua toolkit for agile development in

membrane computing,” Information Sciences, vol 587,

pp. 1-22, 2022.

[27] J. Schiff, Cellular Automata: A Discrete View Of

The World, Wiley, 2011.

[28] H. Huynh, T. Dang, O. Mỹ Linh, H. Hoang Luong,

N. Duong Trung, T. Phan, and B. Pottier, “Simulating

mangroves rehabilitation with cellular automata,” in the

4th International Conference on Machine Learning and

Soft Computing, pp. 40-45, 2020.

[29] H. Pei, Y. Lou, and Y. Feng, “Robot path planning

based on cellular automata with mixed neighborhoods,”

in the 11th International Symposium on Computational

Intelligence and Design (ISCID), pp. 114-117, 2018.

[30] A. Enescu, A. Andreica, and L. Diosan, “Evolved

cellular automata for edge detection”, in Genetic and

Evolutionary Computation Conference Companion, pp.

316-317, 2019.

[31] D. E. Goldberg, Genetic Algorithms In Search,

Optimization, And Machine Learning, Addison-Wesley,

2002.

[32] K. A. De Jong, Evolutionary Computation: A

Unified Approach, MIT Press, 2006.

[33] C. Goh, H. Ewe, and Y. Goh, “An artificial cell

simulator based on artificial chemistry,” in the 8th

International Conference on Software and Computer

Applications, pp. 338-342, 2019.

