
International Journal of Contemporary Computer Research (IJCCR), Vol.2 Issue.2 (July, 2018)

ISSN: 2600-9048

Developing Roles in Agile Software Development

Mohamed Kamel Atwa

Faculty of Computer and Information Technology, AlMadinah International University Malaysia, Selangor,

MIT163BX770,atwa712002@gmail.com

Received 16 Jun 2018; accepted 10 July 2018

Abstract

One of the consequences of the Agile principles is a drastic redefinition of the roles that exist in a software project. This paper will study

the roles in three parts. In the first part we are going to see what managers traditionally in non-Agile methods do. In the second part we are

going to focus on Scrum which has been very influential now days. In part number three we are going to broaden the perspective a bit not

just working according to strict Scrum principles to see what other roles can exist in Agile projects particularly with other Agile methods. I

will use the articles talked about the roles in agile methodologies and will study a use case of applying agile methodology in a critical web

project which is a replacement of current desktop project. then I will show what can we extract from what agile present to us in addition to

what is existing from very long years of effort in the field of software engineering.

Keywords: (Agile management, roles, managerial roles, technical roles, agile methods.)

1. Introduction

software development organizations have become

more interested in agile methodologies, whose focus is

client collaboration, individual value and adaptation to

change. This interest has grown because these

methodologies have shown productivity gains in

several different software development project types.

The choice of the most adequate software methodology

for software development neither is a trivial task nor

guarantees the project’s success. Nevertheless, agile

methodologies have caught the eye of software

companies, given the evidence of the productivity

increase they provide [1]. One of the most important

basics in agile is the redefinition of the roles in the

process of development. It is really new vision which

make the project manager role less important than it

was before while it split to other roles in more efficient

way that lead the project to end as the client wish in

the determined time. the main idea from my point of

view is that with the last delivery of the last sprint of

the project the complete project is already tested and

working under to approval of the client

2. Roles of the managers in traditionally non-Agile

methods:

we are going to review some of the many tasks and

roles that managers fulfil in traditional pre-Agile

projects. What do managers do? In a traditional setting

they do quite a few things. Here is a list of tasks which

are typical of what managers do.

1. Define goals

2. Define deadlines

3. Assign tasks

4. Provide interface with higher management

5. Provide interface with customer

6. Validate requirements

7. Decide whether goals have been met

8. Enforce deadlines

9. Coach, mentor

10.Enforce rules and methodology

 One of the primary tasks of the manager is to define the

goals of the project and of each iteration of the project. So

that is about what a manager does. It's not good enough to

promise some results. so we have to define deadlines. And

usually customers are very impatient. So that's also one of

the manager's responsibilities, to define the deadlines. Then

on a day to day basis, a traditional manager will assign

tasks. You do this today, you do that next week. The

manager is also going to be responsible for providing

the interface to the upper management.

This also includes often a role of umbrella, of

protecting the team from undue interference with

upper management. This umbrella role is of course

one of the important roles of the manager. Not only

do we need to interface with management in our own

company, we need to provide an interface with the

customer. Now the customer being total. That is to

say, another division of the same company. Or we

might even be doing something for ourselves as a

team. But most of the time, the customer is well-

defined and separate from the team. And it's part of

the role of the manager to ensure that the interface

with the customer's organization is smooth, and in

particular, that the team is aware of what the customer

wants and also the customer is aware of what the team

is doing, and comfortable with it. at the end the results

are up to the customer's expectations. In order for this

to work one must validate requirements. Because of

course the customer is going to help define

requirements. But at some point, it may be some of

International Journal of Contemporary Computer Research (IJCCR), Vol.2 Issue.2 (July, 2018)

ISSN: 2600-9048

the requirements are unrealistic. And because the

manager is responsible for defining goals and defining

deadlines, it's his or her responsibility if needed to

step in and say no we can't do this. It's unrealistic. Or

we could do it but not within the time limits specified.

, So it is important to validate the requirements. Now

the goals have been defined. And at various intervals

these goals will have been realized, or the team

Claims. So part of these goals and so it is part of their

manager to decide whether these goals have been met,

or how much of the goals have been met at a

particular point in the development of the project. It's

not only goals that count, it's the time at which they

are met. it's part of the manager's role not only to

define the deadlines that is kind of the easy part but to

enforce the deadlines. It's easy to say this is going to

be ready in December, especially if we are in January.

It's much harder to make sure that when December

comes the goals have indeed been met. And of course,

I'm talking about January and December, but typically

in an Agile development process, and generally in a

modern development process, many of the goals of

more short term. And the deadlines loom on the

horizon, so it's important to make sure that these

deadlines are met. Now these are all management

tasks in the traditional sense. In the strict sense of the

term managing people, and foreseeing goals and

deadlines. But managers in practice do more. Often

manager is a senior member of the software

profession. That's not always the case. You have

managers who are more of the MBA type, who are

more pure managers. But much of the time, in

software projects, the manager himself or herself is a

software professional. More experienced, hopefully,

than the members of the team. And so part of the role

of the manager is to serve as a coach and to mentor

the rest of the team. A good manager is someone to

whom more junior people come when they hit a snag,

when they don't know what approach to use for a

particular part of the problem. And as a seasoned

professional, the manager is here to coach people and

to mentor them. That is part of the role of many good

managers. Finally, any well-organized team, and in

general any well-organized company that does

software development, will have defined some rules

and some methodology for developing software.

House rules, style rules, rules regarding the software

process, rules regarding testing, and software quality

assurance. In general, of course, rules are only as

good as their enforcement, as their application. So it is

part of the manager's role to enforce these rules. To

make sure that they don't just remain ink on paper or

pixels on a screen. But that the team actually applies

them and abides by them. This was a brief overview

of the role of the managers in traditional management

before the emergence and adoption of Agile

management [2], [3], [4]
3. Roles of Agile methods (Scrum):

Figure 1

Scrum is very particular about roles in a project,

and in strict Scrum development there's actually

three roles that have to be fulfilled, not two and

not four, but exactly three, and here we are going

to see what these three Scrum roles are. Scrum's

major contributions are in the management area,

so it's not surprising that Scrum takes a shot at

completely redefining the traditional manager

responsibilities that we saw in the previous part.

In fact, in strict Scrum, there is no such role as a

manager. The traditional tasks of the manager are

split between three different roles, the self-

organizing team, the product owner, and the

Scrum Master. The last two are people. The first

one is a group of people, which collectively takes

a certain number of critical decisions. let's review

those three roles in turn.

Self-organizing team:

The team is a group of people. it has

responsibility for many of the fundamental

managerial tasks. A Scrum team and in general an

agile team, this is a theme that runs through other

agile methods as well, is cross-functional. What

does that mean? Well, in the agile world, they

don't want to have narrow specialties. And don't

want in particular to have people who feel they

own a particular expertise in the project and as a

consequence a particular piece of the code or the

product. But here what's important is that the

team is cross-functional, meaning the project

don't have anyone who is in charge solely of a

certain area. but may have experts, for example.

may have people who know more about object-

oriented methodology, about databases, about

networks, or any particular specialty that is

needed by the project. But no one owns any

International Journal of Contemporary Computer Research (IJCCR), Vol.2 Issue.2 (July, 2018)

ISSN: 2600-9048

particular area. And this means in particular in the

Scrum view that we have a list of tasks to be

fulfilled for a certain iteration. And whenever

someone becomes available, he or she takes one

of these tasks. essentially anyone be able to take

on any task. That's what it means by cross-

functional. No narrow specialization, no personal

ownership of an area. Scrum also specifies an

ideal team size based on a famous paper in

psychology about magic number seven, [3] plus

or minus two. the ideal size of a team is seven,

plus or minus two members. Does this mean that

Scrum is limited to small or relatively small

projects, medium-scale projects? Not necessarily.

There's a notion of Scrum of Scrums, which is

intended to tackle big projects. So as the name

suggests, a Scrum of Scrums is a group of

individual projects that are coordinated at a higher

level, but each one of them remains a standard

Scrum project, with this kind of number of team

members. Part of the responsibility of the team,

which of course is very important, is for a

particular iteration, not for the project as a whole,

but for a particular iteration of the project, to

select the major goals for the iteration and the

results that are going to be released by this

iteration, known in Scrum as a sprint. So that's of

course a key role, especially since it goes with the

next two. The team organizes itself and its work,

so you don't have or need someone which tells the

team where to go and what to do on a step by step

basis. It's really the team that decides to assign the

tasks to its members and organize the work. The

team can really do everything it likes as long as it

thinks that is going to help reaching these goals

and as long, of course, as what it does fits within

the rules, within the guidelines that have been

defined for the project. And of course, at the end

of an iteration and maybe even before, in some

cases, the team will have to demonstrate its

results to the product owner, who, as we are going

to see, is the one who decides in the end what

passes and what doesn't pass as a suitable result.

So these are very important responsibilities. They

correspond to much of what traditional managers

do. And they are farmed out in Scrum to the

collective actor, the collective role of the team. In

meetings of a sprint or in meetings of a Scrum

project, they are going to have to decide who is

permitted to talk freely and who is just on the

side-lines, because meetings may be of interest

not just to the team itself, but to some other

participants, for example representatives of other

projects with which the team is collaborating.

And there's a risk that the meetings get out of

hand. In order to keep the meetings focused and

short, not everyone can speak at any particular

time, so there's a distinction between core

participants, the team proper, and fellow

travellers. The core participants are those who are

permitted to participate actively in the meeting.

And the fellow travellers are there to listen. And

they will participate actively, but only if asked.

This is also known as committed people and

involved people.

Product owner:

Figure 2

The basic idea of the product owner, who is a person

not a group, is that he or she is responsible for

ensuring the interface with the customer and making

sure more precisely that the product meets the

customer's needs and expectations. the product owner

is going to define the product features. He or she is

going to decide on the release date. the two go

together, since product features are great, but only if

they are delivered within the lifetime, so time is very

important. As per Kent Beck's citation at the

combination between timing constraints and

functionality constraints [5]. The product owner

decides also on the content of any major release, not

just the final product, but intermediate releases as

well, although he is not in charge of individual small

sprints, small iterations. That is the task of the team

itself, the self-organizing team. There's a strong

emphasis in Scrum on business aspects and in

particular on profitability. A term that recurs in Scrum

discussions is ROI, Return On Investment. And the

product owner is responsible for that view of the

project, which is not necessarily the first one of a

typical developer, making sure that a project returns

and delivers value to the customer. The product owner

prioritizes features. in a project typically, we want lots

of features, even if, as we've seen, agile has a strong

minimalistic view, trying to limit the set of features.

Well, still, we might define more features than we can

implement. And the need here is for prioritization. We

need to know ahead of time what features are

essential and what features are nice to have but less

essential, so that when the going gets tough, we know

what to sacrifice. And this is one of the

responsibilities of the product owner, prioritization.

There's a rule in sprint that a product owner can

International Journal of Contemporary Computer Research (IJCCR), Vol.2 Issue.2 (July, 2018)

ISSN: 2600-9048

change features and priority, but only over a limited

period, typically 30 days. And the major

responsibility in the end of the product owner is to

decide whether a particular release or the final

product has resulted in something that can be

presented, can be handed over to the customer as

satisfactory or not. the product owner is the one who

says, yes, this is good enough or no, the team need to

get back to work. We cannot give this to the

customer. And of course, it's a major responsibility.

Scrum Master:

The Scrum Master is a person. Again, it's not a group,

but it's a person in this case, who is responsible for

enforcing the methodology, in this case, the Scrum

methodology. So you can think of him or her as a

kind of political commissar who makes sure that the

team properly applies the defined philosophy, not

only Scrum as a whole, but particular guidelines and

rules that may have been defined at the level of the

company and at the level of the particular project. But

a Scrum Master actually does more. So here are some

of the tasks. To ensure that a team is functional and

productive, to enable cooperation across all roles and

functions of the team, to shield the team from external

interferences. , there is sometimes a natural trend for

upper management and other parts of the company to

meddle into the daily work of the team. And that can

be quite disruptive. It's part of the role of the Scrum

Master to serve as what called an umbrella to protect

the team from such undue interferences. The Scrum

Master, as I mentioned, is the political commissar

who is there to enforce the Scrum process, in

particular to organize the daily meetings, also known

as daily Scrums. The planning meetings, the review

meetings, he's in charge of that. The Scrum Master

quite importantly is in charge of helping remove

impediments. Impediment is an important notion in

Scrum. It's an obstacle. It's anything that affects the

progress of the team, known as the velocity, in Scrum.

In Lean terms, we had this rejection of waste, this

injunction to avoid waste. we can also define

impediments as anything that might produce waste,

which of course we want to avoid. examples of

impediments are quite diverse, hardware limitations,

assume a situation in which compilations and tests are

taking too long because programmers don't have

enough memory, so the Scrum Master may be the one

who says, we need to give everyone an extra eight

gigs of memory, because we're wasting time for no

good reason. Another completely different example is

missing requirements. in the study of waste. You stop

because you don't know what to do in a particular

area. And the customer expert who was supposed to

give you this information is not available or is not

giving it to you. So that's the task of the Scrum

Master, to make sure that those kinds of blocks do not

occur or are resolved if they do occur. You might be

waiting for some software from some other group or

from within the group, some library element that you

need for your work and it's not ready yet. That's an

impediment. You might have management

interference or bureaucratic delays and it's going to be

part of the task of the Scrum Master to fight these

things and make sure the impediments go away. In

strict Scrum methodology, the Scrum Master is only a

Scrum Master and only does not develop himself or

herself. And if there is not enough work to occupy a

Scrum Master full-time for your project, the idea is

that a Scrum Master shares his time between several

projects for which he is only Scrum Master. To go a

bit more into the assessment mode here, it's a pretty

dangerous idea, because it's not so good to have in a

project people who are only talkers and not doers.

And we may want everyone to roll up their sleeves

and participate effectively. So there's no absolute rule

here. But the general observation is to be wary of

people who are just advice-givers and who don't have

to live up to the results of their own advice and apply

it as developers. It's probably better if the Scrum

Master has extra time to make him or her develop

along the rest of the team.

In strict Scrum, there is no manager, no role of

manager. The tasks, as we've seen, are split between

the team, the product owner and the Scrum Master.

On the other hand, Scrum authors realize that for

some companies this is going to be too much and that

they will still want to have a project manager. And so

they have some advice for managers if there are any.

The managers should do certain things and not do

some other things. So they should support the team in

its use of Scrum, like the Scrum Master does. They

should contribute wisdom, expertise, and assistance,

so that's kind of the coach and mentoring role. They

should not assign tasks, get status reports. Such

micro-management is part of the team's

responsibilities. Instead they should play guru, mental

coach, and so on. So we can see here that we're kind

of looking at a manager who is also probably the

Scrum Master, at least has some of the responsibilities

of the Scrum Master. There's also the advice that

managers may need to evolve their management style,

for example use Socratic-style questioning to help the

team discover solutions rather than imposing a

solution, as a traditional Steve-Jobs-like manager or

Henry-Ford-like manager might do. What we've seen

in this part the three Scrum roles. Scrum, and in

general agile methods, strongly curtail the traditional

role of the manager. In the next part, we'll see some

International Journal of Contemporary Computer Research (IJCCR), Vol.2 Issue.2 (July, 2018)

ISSN: 2600-9048

other roles which replace part of the tasks in other

methods. But in Scrum, we have three well defined,

precisely defined separate roles, the team, the product

owner, and the Scrum Master.

4. Roles of Agile methods (Non-Scrum):

Not all Agile methods are limited to the three Scrum

rules that we saw in the previous part. we are going to

study a few other roles that applied in Agile methods.

Scrum is not the only Agile method, and other

methods, in particular methods that preceded Scrum,

have come up with their own definitions of roles,

replacing some of the traditional roles of developers

and managers and complementing some of them

Developers:

Main job: turn customer stories into working code.

Developer obligations:

1- Know and understand technical issues

2- Create and maintain the system as it evolves

3- Answer: “How will we implement it?”, “How long

will it take?” & “What are the risks?”

4- Work with customer to understand his stories

5- From a story, decide implementation

6- Estimate work for each story, based on

implementation decisions & experience

7- Identify features that depend on other features

8- Identify risky features and report them to customer

9- Follow team guidelines

10- Implement only what is necessary

11- Communicate constantly with customers. [6]

expert user:

An interesting idea from Crystal, which of course is

not entirely new since many projects have had in the

past something like this, an expert user is, as the name

suggests [4]. a person with expert knowledge of the

project area, of the project domain, who can answer

questions and even suggest solutions to problems. It's

important here to find the right person. There's always

a risk of getting someone who claims to be an expert

and maybe is not. So, for example, if someone has too

much time on his or her hands, you may be a little bit

suspicious because real users typically are very busy,

real expert users are very busy with doing work. You

also should not just limit yourself to testers from the

development team. And so what Crystal advises here

is to have a minimum of once a week meetings two

hour with expert users and the ability, to make phone

calls any time during the week. But this is one of the

ways to obtain accurate information about the needs,

the actual needs, of the actual users and avoid

developing something that will be recognized too late

as not fitting those needs. [7]

Embedded customers:

In XP, in extreme programming, there is a strong

emphasis, on the role of customers. We have seen the

notion of embedded customers [6]. And we have

noted that it's not such a practical idea. But still, the

notion of customer is very important. So for example,

customers should not meddle too much into technical

decisions. Of course, these days almost everyone

thinks they know something about programming and

about technology. That may or may not be the case.

So it's the developers who are responsible for the

technology, not the customers. For all the added roles

that we have in Agile methods for the customers, it

doesn't mean that customers should be responsible for

everything, and they should also know their place.

This is basically what this text tells us a bit more

politely. The customers are also responsible for

helping the team analyse the risks. In particular,

weighing the various user stories, the requirements

elements against each other. It's difficult for the

developers to know what is more critical, what is

more risk prone, and what is less critical. And here

the customers provide a fundamental help. The

customers are responsible for providing precise user

stories so that developers know exactly and, more

importantly, accurately what users need. They should

be the ones who say what are the stories with the

maximum value so that features can be properly

prioritized. And they should collaborate with the

team, not treat the team as an external body, but really

attempt to work closely with them and help them at

every step. So in the same style, this same article

which I recommend gives a number of elements of

advice as to what developers should be responsible

for. I'm not going to go through the entire list. I just

refer to that article. But I'll pick a few examples.

Implement only what is necessary: This, of course, is

part of the minimalistic spirit of the Agile approach.

And the idea here is that team should refrain from

own impulses, which are natural for a developer to

want to do, always more to add more features, well,

make sure to implement only the features that are

fundamentally useful for the customer, and not just all

of those that please you for intellectual elegance and

value. The responsibility of the developers also

include working closely with customers to understand

their stories, not just to get started on the basis of a

vague description and make interpretations that may

or may not be justified, but try to understand in depth

what a customer really means when he has specified a

certain user story. And in general, developers should

constantly communicate with customers involved in

the project. It's of course part of the developer's role

in this self-organizing team to estimate the work for

each story. Those are some of the examples of the

International Journal of Contemporary Computer Research (IJCCR), Vol.2 Issue.2 (July, 2018)

ISSN: 2600-9048

important responsibilities that developers have in an

Agile project. There are also a number of rights.

There are notions like personal safety and

responsibility. So a developer has a right to give his

own estimate for his own work, to work sensible and

predictable schedules. Schedule only work that can be

done, not have unrealistic expectations which cannot

be met and which as a result affect everyone and

lower the morale of the team. Produce code that meets

the customer needs. And it's also important for the

developer to be shielded from having to make

decisions that are really not developers' decisions, but

business decisions. Of course, the boundary's

sometimes fine between strictly technical and strictly

business decisions, but we should be aware of these

problems and not unfairly force onto developers

decisions that are really management or customer

decisions or business decisions.

Customer responsibilities in XP:

1- Trust developers’ technical decisions, because

developers understand technology

2- Analyse risk correctly, weighing stories against

each other

3- Provide precise stories, enabling developers to

produce comprehensive task cards and accurate

estimates

4- Choose stories with maximum value, scheduling

the most valuable stories that could possibly fit in to

next iteration

5- Work within team, providing guidance and

receiving feedback as quickly and accurately as

possible

Tracker:

In some sources, you find a special role of tracker,

who is a person responsible for keeping track of the

schedule[6]. which is the ratio of what the team is

actually doing to what it should be doing in an ideal

scheme. And so this is something that we're going to

track in an Agile project, in particular in a Scrum

project. And we may have a special role assigned for

this. And it's particularly important then to look for

signs of potential problems, like changes in velocity,

like too much overtime work, or too many tests that

fail rather than pass before we move on. So these are

numbers that measure progress, and it's important for

someone to be responsible for measuring that

progress.

Coach:

We have seen the notion of Scrum master, which is a

bit specific to Scrum. In general, in Agile methods

prior to Scrum, there was a notion such as coach,

which is a role with the following responsibilities,

some of which are familiar because we have seen

them in the Scrum master. The coach is here to guide

the team, to mentor the team, to lead by example as a

good commander, to teach when necessary, and often

to teach just by doing. Sometimes you just watch

someone doing something right, and that's the best

way in some cases to learn, to offer ideas to solve

difficult tricky problems, and to serve sometimes as

an intermediary with management. So, in Scrum, this

is part of what the Scrum master does. what we've

seen in this last part of roles is a variety of roles, not

exactly identical to those of Scrum, but replacing or

complementing many of the traditional software

development roles.

5. Assessment and Discussion:

we have noticed that while we study the roles from

traditional methodologies to the agile methodologies

there are some really good ideas and some ideas

which are perhaps not so good. So, we need to

perform an assessment. the user assessment that

matters. He is the one who have to decide what

among the Agile ideas are the ones that are right for

him and which ones are not so good but there are also

some objective criteria. After all, Agile development

didn't come into an empty world. We have had several

decades of software engineering before. So, we have

some empirical studies. And we have some analytical

criteria to help us judge. Unfortunately, there are a

number of Agile ideas which are really bad and which

we have to stay away from. not everything is going to

improve software development however fashionable it

may be to say that we are applying Agile methods. As

assessment we will discuss some of the nations

around roles in the following points:

1- The idea that the method keeper or the political

commissar as we described him (the Scrum Master)

should not develop code. We want doers. We don't

just want talkers so if he has time and don’t work as

Scrum Master on other projects he must have some

code responsibilities. In our case the Scrum master

was in a team develop and lead and guide the

developers.

2- Many successful engineering projects are

successful because of a strong manager. And to

pretend that every team can be self-organized and will

have better results if it's self-organized than if it has a

strong manager is extremely detrimental.

3- Pair programming is actually a good idea in some

cases It can help and it's widely applied. But it's not

justifiable as the only way to develop software. In my

case I used it when I have a heavy task required in a

tight time so I use an expert developer with a normal

developer to do it and it successes. another case I used

pair programming a few days before one of the

International Journal of Contemporary Computer Research (IJCCR), Vol.2 Issue.2 (July, 2018)

ISSN: 2600-9048

developers is going to have his vacation so I put his

replacement with him in recent tasks to make the

replacement live the tasks and start to produce

directly once he become the responsible developer.

4- Cross-functional teams. It's in general a good idea

to have lots of knowledge shared in a team between

the team members. But it's inevitable that some

people will be experts in some areas. we want to

avoid that a project is fundamentally dependent on

one person. But we cannot ignore this phenomenon of

specific expertise. In our case we success in prevent

the idea of a person own a part of code and a problem

of his absence. Everyone can work in any task code,

but in the software organizations we cannot share the

roles of DBA or operation or networks specialists.

5- embedded customer. this is a pleasant idea in

principle as introduced by extreme programming. it

really worked very well in our case where the

customer represent was always with us in meetings or

on phone to discuss any non-clear task.

6- Tests as one of the key resources of the project. a

major contribution of the Agile approach to

rehabilitate the notion of test and convince us that our

regression test suite which we run again and again and

again is one of the key assets of the project.

Essentially as important as the code base. This is a

major advance in software engineering.

6. Conclusion:

There has been a tendency in the Agile literature to

promote Agile methods as a panacea, as a marvellous

recipe. And some of the productivity improvements

that are announced. It's a major improvement. But it

doesn't displace the previous ideas. It complements

them. Software development is hard and what really

counts in the end is quality. Anything that helps

produce software of better quality is going to be

helpful. And Agile methods have that potential. Lots

of good ideas. Agile in that can help. There is no

reason to reject those from any particular style of

software engineering. Particularly since we should be

quite humble there since there is not much empirical

data from impeccable, unimpeachable studies that

show that technique A is better than technique B. We

have very little of that in our studies but not enough.

So, we should be very careful in our claims. And in

the end, Agile methodologies roles is not a

replacement for more than 50 years of evolution of

software engineering methodologies roles. It's a

complement for those decades and all this

accumulated wisdom. so, as a conclusion Agile is a

mix of good and bad ideas and whatever its

limitations, whatever the criticisms that one can make

it's a major step in the evolution of software

engineering.

References

[1] Leitão, M. V. Aplicação de Scrum em Ambiente de

Desenvolvimento de Software Educativo. Monografia
(Trabalho de Conclusão de Curso) – Universidade Federal de

Pernambuco, Recife – 2010. Available at: . Last access:

apr.2011.

[2] Jeff Sutherland, Rini van Solingen and Telco Rustenberg: The

power of Scrum, CreateSpace, 2012.

[3] Jeff Sutherland: Scrum: The Art of Doing Twice the Work in

Half the Time, tutorial notes, 2013, available at
http://www.scruminc.com/wp-

content/uploads/2014/10/CSMjsv18a1.pdf

[4] Jeff Sutherland: Self-Organization: The Secret Sauce for
Improving your Scrum Team, video at

www.youtube.com/watch?v=M1q6b9JI2Wc.

[5] El-Ebiary, Y. A. B., Najam, I. S. M., & Abu-Ulbeh, W. (2018).

The Influence of Management Information System (MIS) in
Malaysian’s Organisational Processes—Education Sector.

Advanced Science Letters, 24(6), 4129-4131.

[6] Kent Beck, with Cynthia Andres: Extreme Programming
explained — Embrace Change, Addison-Wesley, 2005 (Second

Edition).

[7] Extreme Programming Pocket Guide, O'Reilly, 2003.

[8] Alistair Cockburn: Crystal Clear — A Human-Powered

Methodology for Small Teams, Addison-Wesley, 2005.

http://www.scruminc.com/wp-content/uploads/2014/10/CSMjsv18a1.pdf
http://www.scruminc.com/wp-content/uploads/2014/10/CSMjsv18a1.pdf
http://www.youtube.com/watch?v=M1q6b9JI2Wc

